Establishment of the Optimum Nitrogen Application Rates for Oriental Melon at Various Growth Stages with a Fertigation System in a Plastic Film House

시설 참외 관비재배시 생육단계별 질소시비기준 설정

  • 정규석 (농촌진흥청 국립농업과학원) ;
  • 정강호 (농촌진흥청 국립농업과학원) ;
  • 박우균 (농촌진흥청 국립농업과학원) ;
  • 송요성 (농촌진흥청 국립농업과학원) ;
  • 김계훈 (서울시립대학교 환경원예학과)
  • Received : 2010.06.08
  • Accepted : 2010.06.14
  • Published : 2010.06.30

Abstract

This experiment was conducted to establish the optimum nitrogen application level for oriental melon at Seong-ju Fruit Vegetable Experiment Station with a fertigation system. Four different levels of nitrogen fertigation were applied to oriental melon and growth of the plant was analyzed. Plant samples were collected 8 times and were analyzed by the standard methods. The first fertigation was applied at 10 days after transplanting for the oriental melon based on the growth rates of the plants. For oriental melon, 10 day interval fertigation and 8 time split application of fertilizer could be recommended. The amounts of N, P, and K fertilizer recommended by soil testing was 249-408-315 (kg $ha^{-1}$). Treatment levels were 0, 0.5, 1.0, and 1.5 times of soil testing nitrogen with P and K level fixed. The total nitrogen (T-N) content in dried leaf showed a tendency to increase until 30 days after transplanting, then decreased. T-N content increased with increasing nitrogen fertigation rates. T-N content in dried fruit decreased slightly during the whole growing season. Fresh weight and nitrogen uptake were increased with increasing nitrogen fertigation rates. Total yield and marketable yield, 44,550 kg $ha^{-1}$ and 42,880 kg $ha^{-1}$, were maximized at 0.5 times of soil test nitrogen. Ratio of marketable fruit, 95%, was the highest at 0.5 times of soil test nitrogen. The optimum level of nitrogen for fertigation system was 0.5 times soil test nitrogen judging from total yield, commodity yield and commodity fruit.

본 연구는 토양검정시비량에 준하는 비료량을 기준으로 그 처리량을 가감하여 점적관수로 관비하였을 경우 참외의 생육과 수량에 미치는 영향을 조사하고 참외의 생육단계별 양분흡수특성을 검토하여 관비재배 시에 생육단계별 참외 질소시비기준을 설정하고자 수행되었다. 이를 위하여 토양검정 질소시비량 ($N:P_2O_5:K_2O$=249:408:315 kg $ha^{-1}$)의 0배, 0.5배, 1.0배, 1.5배에 해당하는 질소량을 8회로 나누어 정식 후 10일 간격으로 관비하였다. 점적관비에 의한 참외 생육기간 중 참외의 생육, 수량 및 무기양분흡수 등을 조사하였다. 잎, 줄기 중 T-N의 함량은 정식 30일까지 증가한 후 점점 감소하는 경향을 보였고, 질소관비량이 증가할수록 T-N함량도 증가하는 경향을 볼 수 있었다. 질소관비량이 증가할수록 참외의 생체중과 질소흡수량은 증가하였지만 총수량 및 상품수량은 그렇지 않았다. 총수량과 상품수량은 검정시비 0.5배구에서 각각 44,550 kg $ha^{-1}$와 42,880 kg $ha^{-1}$로 가장 높았다. 또 상품과율도 0.5배구에서 95%로 가장 높았다. 결과적으로 과실의 총수량, 상품수량, 상품과율 등을 고려할 때, 검정시비 0.5배구에 해당하는 질소량의 관비가 참외의 생육 및 수량 증가에 가장 효과적인 것으로 판단된다.

Keywords

References

  1. Cook, W.P. and D.C. Sanders. 1991. Nitrogen application frequency for drip-irrigated tomatoes. HortiSci. 26: 250-252.
  2. Hedge, D.M. 1997. Nutrient Requirement of Solanaceous Vegetable Crops. Extension Bulletin ASPAC, FFTC. NO. 441, 9.
  3. Jung. B.G., H.J . Jun, Y.S. Song, and K.S. Lee. 2005. Establishment of optimum nitrogen application rates in fertigation system for vegetable cultivation. NIAST. pp. 270-289.
  4. Kim, K.D., J. W. Lee, I.H. Cho. T.Y. Kim, Y.H. Woo, E.Y. Nam, and B.H. Mun. 2004. Determination of daily amount of N and K required in various growth stages and establishment of diagnostic criteria using petiole sap analysis in the semi-forcing culture of cucumber. J. Bio. Environ. Con. 13:96-101.
  5. Lee, I.B., J.H. Lim, and J.M. Park 2007. Effect of reduced nitrogen fertigation rates on growth and yield of tomato. Korean J. Environ. Agric. 26:306-312. https://doi.org/10.5338/KJEA.2007.26.4.306
  6. Lee, S.G., K.Y. Kim, J.H. Chung, Y.B. Lee, and J.H. Bae. 1997. Effect of nitrogen fertilizer level on the yield and quality of Watermelon. J. Bio. Fac. Env. 6:97-102.
  7. Lee, S.T., Y.B. Kim, Y.H. Lee, and S.D. Lee. 2006. Effect of fertigation concentration on yield of tomato and salts accumulation in soils with different EC level under PE film house. Korean J. Environ. Agric. 25:64-70. https://doi.org/10.5338/KJEA.2006.25.1.064
  8. Lim. J.H., I.B. Lee, and H.L. Kim. 2001. A criteria of nitrate concentration in soil solution and leaf petiole juice for fertigation of cucumber under greenhouse cultivation. Kor. J. Soil Sci. Fert. 34:316-325.
  9. Locaseio, S.J. and A.G. Smajstrala. 1995. Fertilizer timing and pan evaporation scheduling for drip irrigation method. In: Proceeding of the Fifth International Micro Irrigation Congress on Micro Irrigation for a Changing World. Conserving Resources/Preserving the Environment held at Hyatt Regency Orlando, Orlando, Florida, April 2-6, pp. 175-180.
  10. Miller. R.J., D.E. Rolstan, R.S. Rauschkolb, and D.W. Walfe. 1976. Drip irrigation of nitrogen is efficient. Calif. Agric. 30: 16-18.
  11. NIAST. 2000. Methods of soil and plant analysis. National Institute of Agricultural Science and Technology, RDA, Suwon, Korea.
  12. Pang, X.P., J. Letey, and L. Wu. 1997. Irrigation quantity and unifonnity and nitrogen application effects on crop yield and nitrogen leaching. Soil Sci. Soc. Amer. J. 61 :257-261. https://doi.org/10.2136/sssaj1997.03615995006100010036x
  13. Park. B.G .. T.H. Jeon. T.H. Kim, and Q.S. Ho. 1994. Status of farmers application rate of chemical fertilizer and farm manure for major crops. Kor. J. Soil Sci. Fert. 27:238-246.
  14. Park, D.K, J.K. Kwon, J.H. Lee, Y.C. Um, and H.T. Kim. 1997. Effects of fertigation on yield and quality of Oriental Meton. Horticulture abstracts. p. 207.
  15. Park, H.T. and S.D. Hong. 2000. Optimum level of nitrogen fertilizer based on content of nitrate nitrogen for growing Chinese cabbage in greenhouse. Kor. J. Soil Sci. Fert. 33:384-392.
  16. Raun, W.R. and G.V. Johnson. 1999. Review and interpretation: improving nitrogen use efficiency for cereal production. Agron. J. 91:357-362. https://doi.org/10.2134/agronj1999.00021962009100030001x
  17. Singandhupe, R.B., G.G.S.N. Rao, N.G. Patil, and P.S. Brahmanand. 2003. Fertigation studies and irrigation scheduling in drip irrigation system in tomato crop. Europ. J. Agron. 19:327-340. https://doi.org/10.1016/S1161-0301(02)00077-1
  18. Tei, F., P. Benincasa, and M. Guiducci. 2002. Critical nitrogen concentration in processing tomato. Europ. J. Agron. 18:45-55. https://doi.org/10.1016/S1161-0301(02)00096-5