• Title/Summary/Keyword: Soil Vapor Extraction

Search Result 50, Processing Time 0.021 seconds

토양가스추출법의 제거효율 평가

  • 이창수
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.09a
    • /
    • pp.285-288
    • /
    • 2003
  • When the soil vapor extraction as a remediation method of contaminated soil and groundwater has been used, the effects of curtain wall, mode of pump operation were examined by numerical simulation. Consequently, it was found that the removal rate was enhanced in case that the curtain wall was established around the extraction well with the extraction pumps operated alternatively. It was because that the removal of high density gas around the extraction well was possible.

  • PDF

A Study on the Removal Efficiency of the Soil Vapor Extraction by Numerical Simulation (수치모형에 의한 토양증기추출법의 제거효율에 관한 연구 - 차단벽, 추출유량, 펌프가동방법의 영향 -)

  • Lee, Chang-Su
    • Journal of Korea Water Resources Association
    • /
    • v.32 no.2
    • /
    • pp.121-129
    • /
    • 1999
  • When the soil vapor extraction as a remediation method of contaminated soil and groundwater has been used, the effects of curtain wall, mode of pump operation and magnitude of extraction flowrate were examined by numerical simulation. Consequently, it was found that the removal rate was enhanced in case that the curtain wall was established around the extraction well with the extraction pumps operated alternatively. It was because that the removal of high density gas around the extraction well was possible. It was found that the removal efficiency of TCE gas did not depend on the extraction flowrate. However, the removal rate of TCE gas at varying extraction flowrate was not enhanced flowrate increase.

  • PDF

Removal of diesel hydrocarbons by microwave-enhanced soil vapor extraction (Focused on Loss and Kinetic constant for Diesel Hydrocarbons)

  • 김종운;박갑성
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.04a
    • /
    • pp.223-226
    • /
    • 2004
  • In this paper, removal of diesel hydrocarbons (C$_{10}$-C$_{22}$) for dry and moist soil was investigated so that microwave-enhanced soil vapor extraction(SVE) reduced soil treatment time and raised remediation efficiency. Kinetic constants of diesel hydrocarbons with microwave energy were 7 times on dry soil and 1580 times on moist soil as much as those of SVE process without microwave energy. The diesel removals were 67.7~78.4% for $C_{10}$ and $C_{12}$, and 0~18.5% for $C_{14}$~C$_{22}$ for dry and moist soil with SVE process only. On the other hand, dry soil with microwave-enhanced SVE process showed 89.3~99.4% removal for $C_{10}$ and $C_{12}$ and 35.6~67.0% for hydrocarbons over $C_{14}$. All hydrocarbons(C$_{10}$~C$_{22}$) studied were significantly removed (93.6~99.8%) for moist soil with microwave-enhanced SVE process. Almost all diesel hydrocarbons were usually considered as semi-volatile compounds(SVOCs). Microwave-enhanced SVE process might have a great potential for remediation of soils contaminated with SVOCs.OCs.

  • PDF

Application of Enhanced Soil Vapor Extraction Using PVDs (연직배수재를 이용한 토양증기추출법의 적용)

  • Shin, Eun-Chul;Park, Jeong-Jun;Kim, Jong-In;Choi, Min-Guen
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.10a
    • /
    • pp.382-388
    • /
    • 2005
  • Soil vapor extraction(SVE) is an effective and cost efficient method of removing volatile organic compounds(VOCs) and petroleum hydrocarbons from unsaturated soils. However, soil vapor extraction becomes ineffective in soils with low gas permeability, for example soils with air permeabilities less than 1 Darcy. Prefabricated vertical drains(PVDs) have been used for dewatering fine-grained soils for more than 25 years. Incorporating PVDs in and SVE system can extend the effectiveness of SVE to lower permeability soils by shortening the air flow-paths and ultimately expediting contaminant removal. The objective of the work described herein was to effectively incorporate PVDs into a SVE remediation system and to demonstrate a PVDs enhanced SVE system at full scale. The finding from this research will facilitate the design of field PVD-SVE systems in terms by providing insight into the optimal spacing between PVDs, the radius of influence of the wells and the flow rates to be used to capture and extract gas phase contaminants.

  • PDF

토양증기추출공정 중 오염물의 거동평가기법에 관한 연구

  • 조현정;권태순;양중석;양지원
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.09a
    • /
    • pp.354-355
    • /
    • 2003
  • In this study, a risk-based cleanup approach using the leaching potential was suggested for the soil vapor extraction (SVE) process. A multi-component model was adopted with local equilibrium assumption (LEA), and Raoult's law was applied to estimate the leaching potential for BTEX. Finally, a risk analysis was conducted based on the leaching pontential calculated. To complete the feasibility of this approach, more investigations and discussions will be required in future.

  • PDF

A Field Study on Remediation of Gasoline Contaminated Site by Soil Vapor Extraction (토양증기추출법에 의한 휘발유 오염토양의 현장복원 연구)

  • 김재덕;김영래;황경엽;이성철
    • Journal of Korea Soil Environment Society
    • /
    • v.5 no.1
    • /
    • pp.13-23
    • /
    • 2000
  • The effects of operating condition of soil vapor extraction system and the characteristics of site on the remediation of oil contaminated soil were investigated. Thorough investigation showed that the site was contaminated with gasoline leaked from underground storage tank and the maximum concentration of BTEX and TPH were 1,081 ppm and 5,548 ppm respectively. The leaked gasoline were diffused to 6m deep and the area and volume of the polluted soil were assumed to 170$m^2$ and 1,000$\textrm{m}^3$respectively. The site were consisted of three different vertitical layers, the top reclaimed sandy soil between the earth surface and 3~4m deep, middle silty sand between 3~4m and 6m deep, and the bottom bedrock below the 6m deep. The air pemeability of soil was measured to 1.058-1.077$\times$10$^{-6}$ $\textrm{mm}^2$ by vacuum pump tests. The groundwater which level was 3~4m deep was observed in some areas of this site. The soil vapor extraction system which had 7.5 HP vacuum pump and 8 extraction wells was constructed in this site and operated at 8 hrs/day for 100 days. The BTEX was removed with above 90% efficiency where no groundwater and silty sand were observed. On the contrary, the efficiency of BTEX and TPH were dramatically decreased where groundwater and silty sand were observed. The flow rate of soil air induced by soil vapor extraction system was reduced in deeper soil.

  • PDF

Performance Evaluation of Soil Vapor Extraction Using Prefabricated Vertical Drain System (연직배수시스템을 이용한 토양증기추출공법의 성능 평가)

  • Shin, Eun-Chul;Park, Jeong-Jun
    • Journal of Soil and Groundwater Environment
    • /
    • v.12 no.5
    • /
    • pp.9-18
    • /
    • 2007
  • Soil vapor extraction (SVE) is an effective and cost efficient method of removing volatile organic compounds (VOCs) and petroleum hydrocarbons from unsaturated soils. However, soil vapor extraction becomes ineffective in soils with low gas permeability, for example soils with air permeabilities less than 1 Darcy. Incorporating PVDs in an SVE system can extend the effectiveness of SVE to lower permeability soils by shortening the air flow-paths and ultimately expediting contaminant removal. The objective of the research described herein was to effectively incorporate PVDs into a SVE remediation system. The test results show that the gas permeability was evaluated for four different equivalent diameters, increasing the equivalent diameter results in a decrease in the calculated gas permeability. It was found that the porosity for the dry condition was greater than that of the wet condition and will allow flow rate for the same vacuum flow, offering a low resistance to the air flow.

The Effective Evaluation of Soil Remediation Technology by Gas Phase Concentration Trend (가스상 물질의 농도변화를 이용한 오염토양 복원의 타당성 평가)

  • Park, Duck-Shin;Jung, Woo-Sung;Kang, Sun-Ki;Kim, Moo-Hoon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.7
    • /
    • pp.1233-1241
    • /
    • 2000
  • The purpose of this study is to see the remediability and pilot system operating condition on diesel contaminated areas. Air permeability(k) and trend of gas phase ($O_2/CO_2/VOCs$) concentration to determine the remediation rate of the contaminated sites are very important. So we tested air permeability and trend of gas phase concentration. Throughout soil vapor extraction(SVE) and bioventing hybrid pilot test on different conditions, the range of air permeability(k) was 1985~1194 darcy. The tests result in soil vapor extraction and bioventing hybrid system was appropriate on this test sites, and the suitable injection air flow rate was $3.5m^3/hr$.

  • PDF

A Study on the In-Situ Soil Vapor Extraction and Soil Flushing for the Remediation of the Petroleum Contaminated Site (유류로 오염된 토양 복원을 위한 토양가스추출 및 세척공정의 현장적용 연구)

  • Ko, Seok-Oh;Kwon, Soo-Youl;Yoo, Hee-Chan;Kang, Hee-Man;Lee, Ju-Goang
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.1 no.3 s.3
    • /
    • pp.83-92
    • /
    • 2001
  • Field investigations for subsurface soil and groundwater at a gas station showed that the site was severely contaminated and even petroleum compounds as free liquid state were observed. Pilot-scale soil flushing and soil vapor extraction process(SVE) were applied to evaluate the effectiveness of pollutants removal. Surfactant solution, Tween 80, was used to enhance the solubility of petroleum compounds and resulted in about 10 times increase on TPH(Total Petroleum Hydrocarbon) concentration. As for SVE method, maximum concentration of TPH and BTEX reached within 24 hours of extraction and then continuously decreased. Considerations on the groundwater level and the kinetic limitation for volatilization of contaminants have to be taken into account for the effective application of SVE process.

  • PDF

Heating Characteristics of the Soils for the Application of Electrical Resistance Heating with Soil Vapor Extraction (전기 저항열을 이용한 유류 오염토 복원공정 적용을 위한 토양의 가열특성 연구)

  • Yun Yeo-Bog;Ko Seok-Oh;Park Gi-Ho;Park Min-Ho
    • Journal of Soil and Groundwater Environment
    • /
    • v.11 no.1
    • /
    • pp.45-53
    • /
    • 2006
  • This study was performed to evaluate the heating characteristics of soils for the application of electrical resistance heating process combined with soil vapor extraction. Laboratory tests were conducted to find out optimum heating conditions by the adjustment of electrical supply and electrode. Results show that fine soil particles are more efficient for electrical heating. As water content of soil increases, more efficient electrical heating is observed. However, as the soil is saturated with water above the soil porosity, decrease in the heating efficiency is observed. The higher the voltage, is and the shorter the distance between the electrodes is, the better the heating efficiency is. The soil contaminated by fuel is also more efficient than non-contaminated soil in electrical resistance heating. From the relationship between the intial electrical current and the conductivity obtained in this study, soil temperature by electrical heating can be estimated.