• Title/Summary/Keyword: Soil Resistivity

Search Result 258, Processing Time 0.022 seconds

A Study on the Variation of Resistivity of the Unsaturated Sandy Soils Contaminated by Leachate (침출수로 오염된 불포화사질토의 전기비저항 변화에 대한 연구)

  • Yoon, Chun-Gyeong;Yoo, Chan
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.40 no.2
    • /
    • pp.112-122
    • /
    • 1998
  • Measurement of electrical resistivity in soils has been used for many years with purpose of estimating in situ porosity or density. Recently electrical resistivity has also been used as an indicator of soil contaimination. This paper presents the result of laboratory experiment to investigate the resistivity variation in contaminated sandy soils. The results can be used with the Cone Penetrometer Test (CPT) result to analyse ground condition. In the experiment, the water content and leachate concentration of soils were controlled by groundwater and leachate, and then the resistivity measurement was made with 'STING-R1' by Advanced Geosciences Inc. In the case of using groundwater, the resistivity was in the range of over 1000${\omega}{\cdot}m$, but in the case of using polluted water by leachate, the resistivity decreased significantly down to 10~ 100${\omega}{\cdot}m$ for the same moisture content. Also the resistivity varied according to the degree of saturatrion. Therefore, if soil is contaminated by leachate, the CPT with electrical resistivity sensor might be used to investigate the contamination status and plume migration. But exact component of leachate and the pollutant concentration are still hard to identify.

  • PDF

Forward probing utilizing electrical resistivity and induced polarization for predicting soil and core-stoned ground ahead of TBM tunnel face (전기비저항과 유도분극을 활용한 TBM 터널 굴착면 전방 토사지반 및 핵석지반 예측 기법)

  • Kang, Daehun;Lee, In-Mo;Jung, Jee-Hee;Kim, Dohyung
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.3
    • /
    • pp.323-345
    • /
    • 2019
  • It is essential to predict ground conditions ahead of a tunnel face in order to successfully excavate tunnels using a shield TBM. This study proposes a forward prediction method for a mixed soil ground and/or a ground containing core stones by using electrical resistivity and induced polarization exploration. Soil conditioning in EPB shield TBM is dependent upon the composition of mixed soils; a special care need to be taken when excavating the core-stoned soil ground using TBM. The resistivity and chargeability are assumed to be measured with four electrodes at the tunnel face, whenever the excavation is stopped to assemble one ring of a segment lining. Firstly, the mixed ground consisting of weathered granite soil, sand, and clay was modeled in laboratory-scale experiments. Experimental results show that the measured electrical resistivity considerably coincides with the analytical solution. On the other hand, the induced polarization has either same or opposite trend with the measured resistivity depending on the mixed ground conditions. Based on these experimental results, a method to predict the mixed soil ground that can be used during TBM tunnel driving is suggested. Secondly, tunnel excavation from a homogeneous ground to a ground containing core stones was modeled in laboratory scale; the irregularity of the core stones contained in the soil layer was modeled through random number generation scheme. Experimental results show that as the TBM approaches the ground that contains core stones, the electrical resistivity increases and the induced polarization fluctuates.

A Case of Reducing Grounding Resistance of 154KV Substation (154KV 변전소의 접지저항 저감대책 검토사례)

  • Kee, H.T.;Choi, J.K.;Jung, G.J.;On, D.H.
    • Proceedings of the KIEE Conference
    • /
    • 2000.07c
    • /
    • pp.2064-2067
    • /
    • 2000
  • In our country, most region is composed of mountains and people have recently been displeased with the construction of the substations in their vicinity so the substations newly built are mainly constructed with GIS system in the small area that has high soil resistivity near mountain. Therefore, nowadays the design of substation grounding system has been difficult, and the additional considerations are needed. UC substation was also difficult to design the grounding system because of so small substation area and high soil resistivity. This paper shows the examples of reducing the grounding system resistance reasonably by using several ways. Designing the ground grid electrode in the access road, deep electric earth probe, changing the substation soil with the law level resistivity soil. This report deals with the computer simulation of the grounding system resistance about the ways illustrated above.

  • PDF

Estimation of Soil Resistivity Parameter for Optimal Grounding Design (최적 접지설계를 위한 대지파라메터의 추정)

  • Lee, Hyung-Soo;Lee, Kwan-Hyung;Lee, Bong-Yong;Shim, Keon-Bo
    • Proceedings of the KIEE Conference
    • /
    • 1994.11a
    • /
    • pp.61-63
    • /
    • 1994
  • Accurate estimation of soil resistivity parameters are very important in the design of grounding systems. This paper presents a useful methodology for the optimal estimation of soil parameters based on the weighted least square concepts using a set of earth resistivity measurements by Wenner method. And, this paper developes a computer simulation programming for the estimation of soil parameters. Results are presented and compared with the results of other methods.

  • PDF

지표 물리탐사법을 이용한 염/담수 영역의 고분해능 영상화

  • 박권규;신제현;박윤성;황세호
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.09a
    • /
    • pp.446-449
    • /
    • 2004
  • High resolution geophysical imaging to delineate costal aquifer and seawater- freshwater interface has been applied in Baesu-eup, Yeonggwang-gun, Jeolla province Electrical resistivity information from vertical electrical sounding and 2-D electrical resistivity survey is key parameter to map equivalent Nacl concentration map over the survey area. Seismic velocity from refraction tomographic survey, on the other hand, gives more reliable information on the subsurface stratagraphy than electrical resistivity methods which frequently suffer from low resolution due to masking effect. We imaged high-resolution 3-D structure of costal aquifer by correlating the electrical resistivity with seismic velocity, and mapped equivalent NaCl concentration map using resistivity and hydro-geological information from well logging.

  • PDF

Application of Electrical Resistivity Tomography to Analyze Soil Properties in Unsaturated Bone (불포화대 토양 특성 분석을 위한 전기비저항 토모그래피의 적용성)

  • Yong Hwan-Ho;Song Sung-Ho
    • Geophysics and Geophysical Exploration
    • /
    • v.7 no.3
    • /
    • pp.184-190
    • /
    • 2004
  • To analyze soil properties of unsaturated zone, we applied electrical resistivity tomography(ERT) of high resolution image. From linear relationship with each soil texture between results of ERT and soil properties such as electrical conductivity of pore water, water contents and ionic contents, we could be analyzed the result of ERT more effectively. Consequently, ERT can be useful for estimating soil properties between the two holes and evaluating indirectly pH and organic contents of soil.

Study on Electrical Resistivity Pattern of Soil Moisture Content with Model Experiments (토양의 함수율에 따른 전기비저항 반응 모형 실험 연구)

  • Ji, Yoonsoo;Oh, Seokhoon;Lee, Heui Soon
    • Geophysics and Geophysical Exploration
    • /
    • v.16 no.2
    • /
    • pp.79-90
    • /
    • 2013
  • Geophysical investigation in non-destructive testing is economically less expensive than boring testing and providing geotechnical information over wide-area. But, it provides only limited geotechnical information, which is hardly used to the design. Accordingly, we performed electrical resistivity experiments on large scale of soil model to analyze the correlation between electrical resistivity response and soil water contents. The soils used in the experiments were the Jumunjin standard sand and weathered granite soil. Each soil particle size distribution and coefficient of uniformity of experimental material obtained in the experiments were maintained in a state of the homogeneous. The specifications of the model used in this study is $160{\times}100{\times}50$(cm) of acrylic, and each soil was maintained at the height 30 cm. The water content were measured using the 5TE sensors (water contents sensors) which is installed 7 ~ 8 cm apart vertically by plugging to floor. The results of the resistivity behavior pattern for Jumunjin standard sand was found to be sensitive to the water content, while the weathered granite soil was showing lower resistivity over the time, and there was no significant change in behavior pattern observed. So, it results that the Jumunjin standard sand's particle current conduction was better than the weathered granite soil's particle through contact with the distilled water. This lab test was also compared with the result of a test bed site composed of similar weathered soil. It was confirmed that these experiments were underlying research of non-destructive investigation techniques to improve the accuracy to estimate the geotechnical parameter.

A Study on the Soil Resistivity and the Variation with Lapse of Time for Ground Rods (대지저항률과 접지극의 경년변화에 관한 연구)

  • Han, Ki-Boong;Choi, Chung-Seog;Kim, Sham-Su;Jung, Se-Joong;Lee, Sang-Ick
    • Proceedings of the KIEE Conference
    • /
    • 1999.07d
    • /
    • pp.1639-1641
    • /
    • 1999
  • This paper deals with the seasonal variation of soil resistivity and the special characteristic for ground rods by lapse of time. The ground resistance was changed by humidity, temperature of earth and earth resistance. In this experiment, we studied the resistivity during the period from June 1995 to May 1996 by the soil and the corrosion of the ground rods. As a result, the soil resistivity during the period are appeared minimum in summer and maximum in winter. The loss in weight of Fe rod appeared higher than Cu, Al, Cu-Zn, and St. In the lapse of time, Fe rod was reduced 1.2 % later two years and 1.95 % later three years in weight. Cu rod was defected oxygens of 14.7 % later two years and 30.3 % later three years by EDX.

  • PDF

STIFFNESS AND POROSITY EVALUATION USING FIELD VELOCITY RESISTIVITY PROBE

  • Lee, Jong-Sub;Yoon, Hyung-Koo;Choi, Yong-Kyu
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09c
    • /
    • pp.24-30
    • /
    • 2010
  • The void ratio and elastic moduli are design parameters used in geotechnical engineering to understand soil behavior. Elastic and electromagnetic waves have been used to evaluate the various soil characteristics due to high resolution. The objective of this study is to evaluate the void ratio and elastic moduli based on elastic wave velocities and electrical resistivity. The Field Velocity Resistivity Probe (FVRP) is developed to obtain the elastic and electromagnetic wave profiles of soil during penetration. The Piezoelectric Disk Elements (PDE) and Bender Elements (BE) are used as transducers for measuring the elastic wave velocities such as compressional and shear wave velocities. The Electrical Resistivity Probe (ERP) is also installed for capturing the electrical resistivity profile. The application test is carried out on the southern coast of the Korean peninsula. The field tests are performed at a depth of 6~20 m, at 10 cm intervals for measuring elastic wave velocities and at 0.5cm intervals for measuring electrical resistivity. The elastic moduli such as constraint and shear moduli are calculated by using measured elastic wave velocities. The void ratios are also evaluated based on the elastic wave velocities and the electrical resistivity. Furthermore, the converted void ratios by using FVRP are compared with the volumetric void ratio obtained by a standard consolidation test. The comparison shows that the void ratios based on the FVPR match the volume based void ratio well. This study suggests that the FVRP may be a useful device to effectively determine the elastic moduli and void ratio in the field.

  • PDF

Physical Property Factors Controlling the Electrical Resistivity of Subsurface (지반의 전기비저항을 좌우하는 물성요인)

  • Park Sam-Gyu
    • Geophysics and Geophysical Exploration
    • /
    • v.7 no.2
    • /
    • pp.130-135
    • /
    • 2004
  • This paper describes the physical properties of the factors controlling the electrical resistivity of the subsurface. Resistivities of various types of soil and rock samples saturated with sodium chloride solutions having nine different concentrations were measured, and the measured resistivities of these samples were compared with calculated resistivities obtained using the conventional empirical formulas. From the results obtained, we observed that the resistivity of the soil and rock samples increases with increasing in pore-fluids resistivity regardless of the media type. However, between 20 and 200 ohm-m, which is the normal range of resistivity of groundwater, the resistivity of the pore-fluids have little or no effect on the resistivities of the samples used. Below 10 ohm-m, the resistivities of the samples are mainly controlled by the pore-fluids, whereas, in the normal range of resistivity of groundwater, the sample resistivities are controlled by their intrinsic matrix resistivity more than by the pore-fluids resistivity. Also, the measured resistivity of rock and soil samples having more than $20\%$ clay contents showed a good agreement with the calculated resistivity using the parallel resistance model whereas, the calculated resistivities of glass beads correlate with that obtained using Archie's formula. When the pore-fluid resistivity is high, the computation of the resistivity values of the samples using the Archie's formula could not be carried out. Through this study, we were able to confirm that the tests are only applicable to the parallel resistance model considering the intrinsic matrix resistivity within the normal resistivity range of groundwater in the subsurface.