• Title/Summary/Keyword: Soil Improvement

Search Result 1,325, Processing Time 0.023 seconds

Effect of Application Added Phosphorus and Potassium for Potato and Chinese Cabbage in Mounded Highland Soil (고랭지 성토지에서 감자 및 배추에 대한 인산과 칼리 증시 효과)

  • Lee, Choon-Soo;Lee, Gye-Jun;Shin, Kwan-Yong;Ahn, Jae-Hoon;Lee, Jeong-Tae;Hur, Bong-Koo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.35 no.6
    • /
    • pp.372-380
    • /
    • 2002
  • This study was conducted to investigate the changes of soil properties for potato and Chinese cabbage after application adding phosphorus and potassium fertilizers in the mounded highland soil from 1999 to 2001. Experimental plots were designed with control(NPK+Lime+Compost) and chemical improvement(Control+Application adding P and K). Mounded soil before field experiment of first year(1999) was low in organic matter, available phosphorus and exchangeable potassium, and the soil texture was loamy sand soil. After 3 years, the contents of soil organic matter increased a little, and available phosphorus and exchangeable potassium contents were remarkably increased. The crop growth in chemical improvement plot was better than control plot. Yield of chemical improvement plot in comparison with control plot was increased by 5~22% for potato and 6~25% for Chinese cabbage after 2~3 years.

Soil Surface Fixation by Direct Sowing of Zoysia japonica with Soil Improvement on the Dredged Soil Slope (해저준설토 사면에서 개량제 처리에 의한 한국들잔디 직파 지표고정 공법에 관한 연구)

  • Jeong, Yong-Ho;Lee, Im-Kyun;Seo, Kyung-Won;Lim, Joo-Hoon;Kim, Jung-Ho;Shin, Moon-Hyun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.14 no.4
    • /
    • pp.1-10
    • /
    • 2011
  • This study was conducted to compare the growth of Zoysia japonica depending on different soil treatments in Saemangeum sea dike, which is filled with dredged soil. Zoysia japonica was planted using sod-pitching method on the control plot. On plots which were treated with forest soil and soil improvement, Zoysia japonica seeds were sprayed mechanically. Sixteen months after planting, coverage rate, leaf length, leaf width, and root length were measured and analyzed. Also, three Zoysia japonica samples per plot were collected to analyze nutrient contents. Coverage rate was 100% in B treatment plot(dredged soil+$40kg/m^3$ soil improvement+forest soil), in C treatment plots (dredged soil+$60kg/m^3$ soil improvement+forest soil), and D treatment plots (dredged soil+$60kg/m^3$ soil improvement), while only 43% of the soil surface was covered with Zoysia japonica on control plots. The width of the leaf on C treatment plots (3.79mm) was the highest followed by D treatment (3.49mm), B treatment (2.40mm) and control plots (1.97mm). Leaf and root length of D treatment was 30.18cm and 13.18cm, which were highest among different treatments. The leaf length of D treatment was highest followed by C, B, and A treatments. The root length of D treatment was highest followed by C, A, and B treatments. The nitrogen and phosphate contents of the above ground part of Zoysia japonica were highest in C treatment, followed by D, B, and A treatments. The nitrogen and phosphate contents of the underground part of Zoysia japonica were highest in D treatment, followed by C, A, and B treatments. C and D treatments showed the best results in every aspect of grass growth. The results of this study could be used to identify the cost effective way to improve soil quality for soil surface fixation on reclaimed areas using grass species.

Clogging Test on Drainage Materials for Soft Ground Improvement (연약지반 개량용 배수재의 Clogging현상에 관한 실험적 연구)

  • Koh, Yong-Il;Kim, Hong-Taek;Park, Young-Ho;Kim, Dae-Young
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.181-188
    • /
    • 2004
  • Composite soil methods among granular pile merhods that we could improve soft ground of fine soil particles by, have permeability as one of fundamental principals. The catual state, that voids of sand or gravel, etc. of granular soil as drainage materials are clogged by fine soil particles, is 'clogging'. In this study, it is analysed that using sand or gravel, etc. of granular soil as drainage materials, experiment are made by clogging tester on several condition.

  • PDF

Construction of Environmentally Friendly Roadbed by Reinforecing Type Soil Solidification Agent (보강형 고화제를 이용한 친환경 도로노반조성 방안)

  • Koh, Yong-Kook
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.667-671
    • /
    • 2004
  • The purpose of this paper is to study on the construction of environmentally friendly roadbed by reinforcing type soil solidification agent. The soil amendment agent used in this study is friendly to the environment, and has a function of soil-cement-agent solidification. The soil amendment agent was admixed with reinforced fiber material for enhancement of strength and durability of roadbed. The project of trial field test of roadbed construction with special reinforcing soil treatment agent was performed in Gyunggido on December 2003. A series of field and laboratory experiments including unconfined compressive strength, permeability were carried out to investigate the physical and mechanical characteristics of solidified roadbed treated by this reinforced solidifying agent. The results of this research showed that the roadbed using normal and poor soil could be efficiently constructed by treatment of this reinforcing type solidification agent admixed with fiber material.

  • PDF

The Characteristics of Soil Remediation by Soil Flushing System Using PVDs (연직배수재를 이용한 토양세정시스템의 오염토양정화 특성)

  • Park, Jeong-Jun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.10 no.5
    • /
    • pp.76-86
    • /
    • 2007
  • For the purpose of ground improvement by means of soil flushing systems. Incorporated technique with prefabricated vertical drains have been used for dewatering from fine-grained soils. The laboratory model tests were performed by using the flushing tracer solutions for silty soils and recorded the tracer concentration changes with the elapsed time and flow rates. A mathematical model for prediction of contaminant transport using the PVD technology has been developed. The clean-up times for the predictions on both soil condition indicate more of a sensitivity to the dispersivity parameter than to the extracted flow rate and vertical velocity parameters. Based on the results of the analyses, numerical analysis indicate that the most important factor to the in-situ soil remediation in prefabricated vertical drain system is the effective diameter of contaminated soil.

Soil Stress State Determination Using a Ball-type Transducer (Ball형 측정기를 이용한 토중 응력 상태의 계측)

  • 전형규
    • Journal of Biosystems Engineering
    • /
    • v.29 no.4
    • /
    • pp.301-306
    • /
    • 2004
  • Soil stresses were measured beneath the centerline of one new 12.4R28 radial-ply tractor tire. The tire was operated with three inflation pressures(59㎪ 108㎪ and 157㎪) and a dynamic load of 14.2 kN and 20% slip. Soil stress state transducer(SST) measured the stresses in a hardpan soil profile. The depth of the SST was 250mm from soil surface. Analysis of the original soil stress data showed that the inflation pressure of tire did significantly affect the vertical stress. The major principal stresses calculated were more when the inflation pressure was 108㎪ than when it was 157㎪. The peak stresses of the major principal stresses presented more than those of the vertical stresses.

Studies on the Reduction of Hydrogen Fluoride Damage to Rice Plant I. Effect of Soil Improvement Agents (수도(水稻)에 대(對)한 불화수소(弗化水素) 가스 피해경감(被害輕減)에 관(關)한 연구(硏究) I. 개량제(改良劑) 처리(處理)에 의(依)한 효과(效果))

  • Kim, Bok-Young;Han, Ki-Hak;Kim, Jeong-Je
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.14 no.3
    • /
    • pp.157-162
    • /
    • 1981
  • The studies we re carried out to examine the effect of soil improvement agents, such as lime, wollastonite and phosphate, in reducing the damage caused by hydrogen fluoride gas to the vegetative growth of rice. The yield loss, damage rate of the plant leaves, the fluoride of the plants were measured. The results obtained are summarized as follows : 1. The best results were obtained a treatment of lime and wollastonite. 2. The rice yield was not significantly increased by the soil improvement agents. 3. The fluoride content of the plants was positively correlated with yield loss and damage rate during vegetative growth.

  • PDF

FEM-based modelling of stabilized fibrous peat by end-bearing cement deep mixing columns

  • Dehghanbanadaki, Ali;Motamedi, Shervin;Ahmad, Kamarudin
    • Geomechanics and Engineering
    • /
    • v.20 no.1
    • /
    • pp.75-86
    • /
    • 2020
  • This study aims to simulate the stabilization process of fibrous peat samples using end-bearing Cement Deep Mixing (CDM) columns by three area improvement ratios of 13.1% (TS-2), 19.6% (TS-3) and 26.2% (TS-3). It also focuses on the determination of approximate stress distribution between CDM columns and untreated fibrous peat soil. First, fibrous peat samples were mechanically stabilized using CDM columns of different area improvement ratio. Further, the ultimate bearing capacity of a rectangular foundation rested on the stabilized peat was calculated in stress-controlled condition. Then, this process was simulated via a FEM-based model using Plaxis 3-D foundation and the numerical modelling results were compared with experimental findings. In the numerical modelling stage, the behaviour of fibrous peat was simulated based on hardening soil (HS) model and Mohr-Coulomb (MC) model, while embedded pile element was utilized for CDM columns. The results indicated that in case of untreated peat HS model could predict the behaviour of fibrous peat better than MC model. The comparison between experimental and numerical investigations showed that the stress distribution between soil (S) and CDM columns (C) were 81%C-19%S (TS-2), 83%C-17%S (TS-3) and 89%C-11%S (TS-4), respectively. This implies that when the area improvement ratio is increased, the share of the CDM columns from final load was increased. Finally, the calculated bearing capacity factors were compared with results on the account of empirical design methods.

Values of Winter Fallow Crops on Soil Properties and Watermelon Productivity in Plastic Greenhouse

  • Uhm, Mi-Jeong;Chon, Hyong-Gwon;Noh, Jae-Jong;Song, Young-Ju;Kwon, Sung-Whan;Sheikh, Sameena
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.2
    • /
    • pp.185-191
    • /
    • 2012
  • This study was performed to screen fallow crops during winter period for improvement of soil quality and utilizing as mulching material in watermelon cropping system during winter period. Five fallow crops, mainly, hairy vetch, barley, rye, oat and wheat, were sown in early November. They were mowed for covering the soil surface instead of polyethylene (PE) film before watermelon planting in early April the following year. The highest absorbed nutrients and dry matter yield were found in rye. Bulk density in plots with fallow crop was lower than control plot. There was observed no significant differences among the fallow crops. However, porosity was the lowest in control plot. Soil EC reduced to 12%, 13%, 14%, 16% and 22%, respectively, by cultivation of hairy vetch, oat, wheat, barley and rye. Microbial biomass carbon and dehydrogenase activities were higher in soil treated with gramineous crops, such as barley, rye and oat. The growth of watermelon was more affected by regeneration of fallow crop than the occurrence of weed, especially in plots treated with rye or oat. Also, the fruit damage by aphid was found severe in these treatment plots. The fruit yield in plots treated with hairy vetch and barley was increased 5.7% and 2.6%, respectively, compared to that of PE films. The present experiment findings implied that these fallow crops had significant beneficial effects on improvement of soil qualities and could be utilized for mulching materials in watermelon cropping system.

Undrained shear strength and microstructural characterization of treated soft soil with recycled materials

  • Al-Bared, Mohammed A.M.;Harahap, Indra S.H.;Marto, Aminaton;Abad, Seyed Vahid Alavi Nezhad Khalil;Ali, Montasir O.A.
    • Geomechanics and Engineering
    • /
    • v.18 no.4
    • /
    • pp.427-437
    • /
    • 2019
  • Waste materials are being produced in huge quantities globally, and the usual practice is to dump them into legal or illegal landfills. Recycled tiles (RT) are being used in soil stabilisation which is considered as sustainable solution to reduce the amount of waste and solve the geotechnical problems. Although the stabilisation of soil using RT improved the soil properties, it could not achieve the standard values required for construction. Thus, this study uses 20% RT together with low cement content (2%) to stabilise soft soil. Series of consolidated undrained triaxial compression tests were conducted on untreated and RT-cement treated samples. Each test was performed at 7, 14, and 28 days curing period and 50, 100, and 200 kPa confining pressures. The results revealed an improvement in the undrained shear strength parameters (cohesion and internal frication angle) of treated specimens compared to the untreated ones. The cohesion and friction angle of the treated samples were increased with the increase in curing time and confining pressure. The peak deviator stress of treated samples increases with the increment of either the effective confining pressures or the curing period. Microstructural and chemical tests were performed on both untreated and RT-cement treated samples, which included field emission scanning electron microscopic (FESEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and energy dispersive X-ray spectrometer (EDX). The results indicated the formation of cementation compounds such as calcium aluminium hydrate (C-A-H) within the treated samples. Consequently, the newly formed compounds were responsible for the improvement observed in the results of the triaxial tests. This research promotes the utilisation of RT to reduce the amount of cement used in soil stabilisation for cleaner planet and sustainable environment.