• Title/Summary/Keyword: Soil Aggregation

Search Result 58, Processing Time 0.032 seconds

Isolation of Streptomyces sp. KK565 as a Producer of ${\beta}-Amyloid$ Aggregation Inhibitor

  • Hwang, Sung-Eun;Im, Hyung-Min;Kim, Dong-Hoon;Shin, Hyun-Ju;Shin, Dong-Hoon;Park, Jeong-Eun;Jo, In-Ho;Kim, Chang-Jin;Yoo, Jong-Shin;Kang, Jong-Min;Lim, Dong-Yeon;Ahn-Jo, Snag-Mee;Kwon, Ho-Jeong
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.5
    • /
    • pp.809-814
    • /
    • 2003
  • ${\beta}-amyloid$ ($A{\beta}$) peptides from the proteolytic processing of ${\beta}-amyloid$ precursor protein (${\beta}-APP$) aggregates in the brain to form senile plaques, and their aggregation plays a key role in pathogenesis of Alzheimer's disease (AD). To isolate an active compound that has an $A{\beta}$ aggregation-inhibitory activity, 2,000 microbial metabolite libraries were screened based on their ability to inhibit $A{\beta}$ aggregation by using both Congo red and thioflavin T assays. As a result, a water-soluble fraction of a soil microorganism, KK565, showed a potent $A{\beta}$ aggregation-inhibitory activity. The strain was identified as Streptomyces species, based on the cultural and morphological characteristics, the presence of diaminopimelic acid in the cell wall, and the sugar patterns for the whole-cell extract. In addition, the purification of active principle resulted in identifying a heat-unstable protein responsible for the $A{\beta}$ aggregation-inhibitory activity.

Effect of Inorganic Cementing Agents on Soil Aggregate Formation in Reclaimed Tidelands (무기 결합재의 처리가 간척지 토양의 입단형성에 끼치는 영향)

  • Son, Jae-Gwon;Choi, Jin-Kyu;Cho, Jae-Young
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.51 no.4
    • /
    • pp.43-47
    • /
    • 2009
  • Soil aggregation is an important part of influencing the soil behaviors in reducing rainfall-runoff and soil erosion, aeration, infiltration, and root penetration. Some inorganic materials such as clay minerals, Fe and Al oxides/hydroxides, and calcium carbonate can act as cementing agents within macroaggregates. The objective of this study was to determine the effects of different cementing agents (Fe, Mn, and Al) on soil aggregate formation in reclaimed tidelands. Water stable aggregate ratio and MWD (mean weight diameter) were higher in iron dioxides treatment than two other treatments. This result indicates significant correlation between soil aggregate formation and iron dioxides.

Relationship Between Soil Water-Stable Aggregates and Physico-chemical Soil Properties (토양 내수성 입단과 토양특성과의 관계)

  • Hyun, Byung-Keun;Jung, Sug-Jae;Song, Kwan-Cheol;Sonn, Yeon-Kyo;Jung, Won-Kyo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.40 no.1
    • /
    • pp.57-63
    • /
    • 2007
  • Soil aggregation has been considered as an important factor not only for increasing soil productivity and soil quality but also improving nutrient use availability and water use efficiency. However, the relationship between soil aggregation and soil properties hasn't well reported for Korean soils. Objective of this research was to identify the relationship among soil water-stable aggregate (WSA), soil properties and soil dispersion ratio. Soil samples were analyzed for water-stable aggregate, Middleton's dispersion ratio, and soil physical and chemical properties. Water-stable aggregate was significantly correlated to soil textural properties, soil organic matter, and exchangeable cations. Middleton's dispersion ratio was significantly correlated with water-stable aggregate ($r=-0.76^{***}$). Regression equation for water-stable aggregate was estimated by Middleton's dispersion ratio (Y=-0.79X + 96.49; $r^2=0.58^{**}$). In this research, we conclude that water-stable aggregate was significantly correlated with some soil properties and was able to be estimated by rapid and easily measurable Middleton's dispersion ratio.

Effect of Gypsum, Popped Rice Hull and Zeolite on Soil Aggregation in Reclaimed Tideland (간척지 토양에서 석고, 팽화왕겨 및 Zeolite 처리가 토양의 입단형성에 미치는 영향)

  • Kim, Seong-Jo;Baek, Seung-Hwa;Lee, Sang-Uk;Kim, Dae-Geun;Na, Young-Joon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.38 no.5
    • /
    • pp.231-237
    • /
    • 2005
  • Gypsum treated to fine sandy loam increased the fornation of >2 mm aggregates in $1,550kg\;CaSO_4{\cdot}2H_2O\;10a^{-1}$ (Kbfg1) and $3,100kg\;CaSO_4{\cdot}2H_2O\;10a^{-1}$ (Kbfg2) to compare with control, Kc, at 60DAT, and bigger aggregates in general at 90DAT. The higher treatment of gypsum level, the <0.1 mm aggregates were less decreased as in Kbfg1, Kbfg2, and $6,200kg\;CaSO_4{\cdot}2H_2O\;10a^{-1}$ (Kbfg3) and aggregates of 0.25->2 mm were increased with increasing level of gypsum with more effective in Kbfg2 and Kbfg3 at 120DAT. Gypsum treated to silt loam increased aggregates of 2.0-1.0 and 1.0-0.5 mm in $3,100kg\;CaSO_4{\cdot}2H_2O\;10a^{-1}$ (Mbfg2) to compare with control (Mc), at 60DAT. Degrees of aggregation from 0.5-0.25 mm to >2 mm aggregates at 90DAT were distinctly higher. The higher treatment of gypsum level accelerated more aggregation of silt loam soil, and aggregates of 0.5-0.25 mm was most increased in Mbfg2 at 120DAT. Popped rice hulls treated to fine sandy loam increased aggregates of 2.0-1.0 mm in plots of $1,000kg\;10a^{-1}$ (Kbfhl) only to compare with control (Kc), at 60DAT, and aggregates of >2 mm and 2.0-1.0 mm Kbfh1 at 90DAT. At 120DAT, aggregation by popped rice hulls was most effective in Kbfbl pot. Popped rice hulls treated to silt loam increased in aggregates of >2 mm and 2.0-1.0 mm in $2000kg\;10a^{-1}$, Mbfb2 to compare with control, Mc, at 60DAT. Degrees of aggregation by popped rice hulls at 90DAT were higher in $1,000kg\;10a^{-1}$, Mbfh1, and Mbfh2, and at 120DAT was in $3,000kg\;10a^{-1}$, Mbfb3. Zeolite treatment with popped rice hulls, $1,500kg\;10a^{-1}$, increased in >2.0 mm aggregates in $1,000kg\;10a^{-1}$, Kbfbz1, $2,000kg\;10a^{-1}$, Kbfbz2, $3,000kg\;10a^{-1}$, Kbfhz3, and Mbfbz1, $1,000kg\;10a^{-1}$, Mbfbz2, $2,000kg\;10a^{-1}$, and $3,000kg\;10a^{-1}$, Mbthz3, to compare with control (Kc and Mc), at 60DAT. irrespective of soil texture. At 90DAT, >2.0-0.5 mm aggregates increased in Kbfhz1 of fine sandy loam. aggregates of >0.25 mm in $200kg\;10a^{-1}$ (Mbfbz1), $400kg\;10a^{-1}$ (Mbfhz2), $800kg\;10a^{-1}$ (Mbfhz3) of silt loam increased with the level of zeolite treatment. At 120DAT, the effect of zeolite treated to both soils showed the decrease of <0.1 mm aggregates. As the result, soil amendments for soil aggregation was more effective in the order of popped rice hulls+Zeolite > gypsum > popped rice hulls in fine sandy loam, and in the order of gypsum > popped rice huUs+zeolite > popped rice hulls in silt loam, respectively.

Comparison of Soil Physical Properties in Conventional and Organic Farming Apple Orchards

  • Chung, Jong-Bae
    • Korean Journal of Environmental Agriculture
    • /
    • v.26 no.4
    • /
    • pp.279-285
    • /
    • 2007
  • Soil physical properties in organic farming apple orchard were evaluated in relation to conventional farming to better understand the effects of organic farming system on soil quality. Two adjacent apple orchards, matched by soil type, were chosen to ensure the same pedological conditions except management system. Soil samples were collected from middle of two adjacent trees along the tree line at two depths of 5-20 and 20-35 cm in September 2006. Contents of organic matter in organic farming soil were twice as much as those found in soil of conventional farming. The higher level of organic matter in organic farming soil was reflected through a consequent trend in improved soil physical properties. Organic farming produced greater aggregation in >2 mm size and increased aggregate stability. Bulk density was lower by 13% and hence porosity was higher in soils of organic farming as compared with conventional farming. Water holding capacity was significantly greater with organic farming by >17% over conventional farming. The capacity of organic farming to improve soil physical properties can be contributed to the regular application of relatively large amount of organic materials and the sustainable ground-cover managements, mulching with compost and cover crop cultivation.

Soil Micro-arthropods Fauna in Plantations of the Korean White Pine (Pinus koraiensis). 4. Community Analysis of Oribatid mites (Cryptostigmata) (잣나무 조재지내 토양 미소 절지동물상에 관한 연구. 4. 날개 응애의 군집분석)

  • 권영립;윤경원
    • Korean journal of applied entomology
    • /
    • v.34 no.2
    • /
    • pp.120-126
    • /
    • 1995
  • This study investigated the soil oribatid mite community at planatations of the Korean white pine, planted in different years. The soil samples $(10\times10\times5cm)$ were taken monthly from Jun 1988 to July 1989, and soil microarthropods in th sample were extracted using the Tullgren funnel for 72 hors. The diversity indices decreased at the older plantation sites with the maximum point in January and the minimum in September. The richness indices showed the maximum point in June and the minimum in may. The dominance indices increased at the older plantation and showed the maximum point in April, May, the minimum in January. The indices of aggregation of Oribatid mites species showed concentrated distribution in the average 1.9. The older plantation, the more indices increase. The seasonal variation of th indices tended to be greatest in April, August and at lowest in January. The richness indices was positively correlated with shannon-wiener, evenness indices. The dominance, aggregation indices was negatively correlated with shannon, evenness, richness indices.

  • PDF

여천지역 준설.매립토의 침강압밀 특성

  • Song, Jeong-Rak;Baek, Seung-Hun;Yeo, Yu-Hyeon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1992.10a
    • /
    • pp.55-60
    • /
    • 1992
  • Hydraulically filled ground is formed by the settling of soil grains from the mixture of soil grains and water. It was generally known that the settling speed of the soil grains in governed by Stokes low. In the case of clayed dredged material, the shape of soil grains is not round, the surface of the soil grains is relatively large compared to the weight of soil grains and inter-grain ionic force is relatively large compared to the wight of soil grains. By this reason the settling and consolidation behavior of hydraulically filled quite different from that of Stokes law. This study investigated the settling and consolidation behavior of hydraulically filled materials of Yeochon industrial complex by large scale laboratory settling & consolidation container. The test results showed tat actual settling speed of soil grains in quite large compared to that of Stokes law. It was turned out that this phenomenon was due to the aggregation of soil grains. Also, it was truned out that the void ration and water content after the completion of settling process was 8.7 and 322% respectively. The consolidtion settlement of clayey hydraulic fill material was predicated better by "incremental small strain" consolidation concept than classical Terzaghj's consolidation concept (infinitesimal strain).

  • PDF

Geotechnical behaviour of nano-silica stabilized organic soil

  • Kannan, Govindarajan;Sujatha, Evangelin Ramani
    • Geomechanics and Engineering
    • /
    • v.28 no.3
    • /
    • pp.239-253
    • /
    • 2022
  • Suitable techniques to stabilize organic soil and improve its engineering behaviour are in demand. Despite various alternatives, nano-additives proved to be an effective stabilizer owing to their strength enhancing properties. The study focuses on using nano-silica as a potential stabilizer to improve organic silt. Soil was treated with four dosages of nano-silica namely 0.2%, 0.4%, 0.6% and 0.8% of dry weight of the soil. Nano-silica treated soil showed a strength increase of nearly 25% at a dosage of 0.4% after curing for two hours. Strength of the treated soil improved with age. Strength improved by nearly 62.9% after 28 days of curing and 221.4% after 180 days of curing due to formation of Calcium - Silicate - Hydrate (CSH) gel in the soil matrix. Dosage of 0.6% nano-silica is observed to be the optimum dosage. Coefficient of permeability and compression index showed an increase by 13.32 and 5.5 times respectively owing to aggregation of particles and creation of void spaces as visualized from the scanning electron micrographs. Further model foundation study and numerical parametric studies using PLAXIS 2D indicate that optimized and economic results can be obtained by varying the additive dosage with depth.

The Relationship between Microbial Characteristics and Glomalin Concentrations of Controlled Horticultural Soils in Gyeongnam Province

  • Kim, Min Keun;Ok, Yong Sik;Heo, Jae-Young;Choi, Si-Lim;Lee, Sang-Dae;Shin, Hyun-Yul;Kim, Je-Hong;Kim, Hye Ran;Lee, Young Han
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.47 no.2
    • /
    • pp.107-112
    • /
    • 2014
  • Glomalin has been suggested as an enhancer for soil stability by promoting the aggregation. In this study, we examined the concentrations of glomalin and microbial characteristics in 25 controlled horticultural soils sampled from Gyeongnam Province. Total glomalin had a significant positive correlation with soil organic matter (p < 0.01), soil microbial biomass carbon (p < 0.05), and dehydrogenase activity (p < 0.05) in controlled horticultural soils. In addition, the total glomalin had a significant positive correlation with concentrations of total fatty acid methyl esters, Gram-negative and Gram-positive bacteria, fungi, and arbuscular mycorrhizal fungi in controlled horticultural soils (p < 0.001). In conclusion, the concentration of total glomalin could be an indicator of microbial biomass richness for sustainable agriculture in controlled horticultural soils.

Influence of Repeated Loading, Alternation of Temperature and Initial Condition on the Change of Strizctural and Mechanical Characteristics of Alluvial Clayey Soil (반복하중,온도변화 및 초기조건이 충적점토의 구조변화와 역학적 특성에 미치는 영향)

  • 유능구;유영선;최중대;김기성
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.34 no.4
    • /
    • pp.69-79
    • /
    • 1992
  • To estimate soil behavior and structural characteristics under the conditions of cyclic loading, freezing & thawing and initial state, several testing was performed and obtained following results. 1.After repeated freezing and thawing processes, original soil structure was destroyed and changed to globular structure from honeycomb or tube in its structure types. Also above processes resulted increasing the soil compression strain while decreasing the failure stress in stress-strain relationship and reached the soil structure into the mode of brittle fracture. Under cyclic loading conditions, soil cluster which was originally dispersed structure colloided with each other, seperated, and finally the soil failed due to the effect of overcompaction. 2.Through the stabilization processes seperated by four steps, the structure of soil skeleton was changed to quite different globular type. The degree of compressibility of soil was decreased in the normally consolidated zone, while the strength against external load increased due to soil particle stabilization. 3.Soil stress-strain chracteristics were largely influenced by repeated up and down processes of temperature. The maximum deformation was obtained in the case of temperature between 0 10˚C by the reseon of particle cluster reformation. 4.Soil compressibility was largely influenced by the optimum moisture content. Under freezing process, swelling could be found and its magnitude was proportional to the density of soil. 5.Density of soil was decreased as increasing the number or repeated freezing and thawing processes and the largest decreasing rate was found at the first turning point from freezing to thawing cycle.

  • PDF