DOI QR코드

DOI QR Code

The Relationship between Microbial Characteristics and Glomalin Concentrations of Controlled Horticultural Soils in Gyeongnam Province

  • Kim, Min Keun (Gyeongsangnam-do Agricultural Research and Extension Services) ;
  • Ok, Yong Sik (Biochar Research Center, Department of Biological Environment, Kangwon National University) ;
  • Heo, Jae-Young (Gyeongsangnam-do Agricultural Research and Extension Services) ;
  • Choi, Si-Lim (Gyeongsangnam-do Agricultural Research and Extension Services) ;
  • Lee, Sang-Dae (Gyeongsangnam-do Agricultural Research and Extension Services) ;
  • Shin, Hyun-Yul (Gyeongsangnam-do Agricultural Research and Extension Services) ;
  • Kim, Je-Hong (Gyeongsangnam-do Agricultural Research and Extension Services) ;
  • Kim, Hye Ran (Korea Research Institute of Bioscience and Biotechnology) ;
  • Lee, Young Han (Gyeongsangnam-do Agricultural Research and Extension Services)
  • Received : 2014.03.20
  • Accepted : 2014.04.11
  • Published : 2014.04.30

Abstract

Glomalin has been suggested as an enhancer for soil stability by promoting the aggregation. In this study, we examined the concentrations of glomalin and microbial characteristics in 25 controlled horticultural soils sampled from Gyeongnam Province. Total glomalin had a significant positive correlation with soil organic matter (p < 0.01), soil microbial biomass carbon (p < 0.05), and dehydrogenase activity (p < 0.05) in controlled horticultural soils. In addition, the total glomalin had a significant positive correlation with concentrations of total fatty acid methyl esters, Gram-negative and Gram-positive bacteria, fungi, and arbuscular mycorrhizal fungi in controlled horticultural soils (p < 0.001). In conclusion, the concentration of total glomalin could be an indicator of microbial biomass richness for sustainable agriculture in controlled horticultural soils.

Keywords

References

  1. Alguacil, M.M., E. Lumini, A. Rolda, J.R. Salinas-Garci, P. Bonfante, and V. Bianciotto. 2008. The impact of tillage practices on arbuscular mycorrhizal fungal diversity in subtropical crops. Ecol. Appl. 18:527-536. https://doi.org/10.1890/07-0521.1
  2. Balser, T., K.K. Treseder, and M. Ekenler. 2005. Using lipid analysis and hyphal length to quantify AM and saprotrophic fungal abundance along a soil chronosequence. Soil Biol. Biochem. 37:601-604. https://doi.org/10.1016/j.soilbio.2004.08.019
  3. Bradleya, K., A. Rhae, R.A. Drijberb, and J. Knopsc. 2006. Increased N availability in grassland soils modifies their microbial communities and decreases the abundance of arbuscular mycorrhizal fungi. Soil Biol. Biochem. 38:1583-1595. https://doi.org/10.1016/j.soilbio.2005.11.011
  4. Casida, L.E., D.A. Klein, and T. Santoro. 1964. Soil dehydrogenase activity. Soil Sci. Soc. Am. J. 47:599-603.
  5. Choi, M.T., J.I. Lee, Y.U. Yun, J.E. Lee, B.C. Lee, E.S. Yang, and Y.H. Lee. 2010. Relationship between fertilizer application level and soil chemical properties for strawberry cultivation under greenhouse in Chungnam Province. Korean J. Soil Sci. Fert. 43(2):153-159.
  6. Driver, J.D., W.E. Holben, and M.C. Rillig. 2005. Characterization of glomalin as a hyphal wall component of arbuscular mycorrhizal fungi. Soil Biol. Biochem. 37(1):101-106. https://doi.org/10.1016/j.soilbio.2004.06.011
  7. Frostegard, A., A. Tunlid, and E. Baath. 1993. Phospholipid fatty acid composition, biomass and activity of microbial communities from two soil types experimentally exposed to different heavy metals. Appl. Environ. Microbiol. 59:3605-3617.
  8. Gillespie, A.W., R.E. Farrell, F.L. Walley, A.R.S. Ross, P. Leinweber, K. Eckhardt, T.Z. Regier, and R.I.R. Blyth. 2011. Glomalin-related soil protein contains non-mycorrhizal-related heat-stable proteins, lipids and humic materials. Soil Biol. Biochem. 43:766-777. https://doi.org/10.1016/j.soilbio.2010.12.010
  9. Hamel, C., K. Hanson, F. Selles, A.F. Cruz, R. Lemke, B. McConkey, and R. Zentner. 2006. Seasonal and long-term resource-related variations in soil microbial communities in wheat-based rotations of the Canadian prairie. Soil Biol. Biochem. 38:2104-2116. https://doi.org/10.1016/j.soilbio.2006.01.011
  10. He, X., Y. Li, and L. Zhao. 2010. Dynamics of arbuscular mycorrhizal fungi and glomalin in the rhizosphere of Artemisia ordosica Krasch. in Mu Us sandland, China. Soil Biol. Biochem. 42:1313-1319. https://doi.org/10.1016/j.soilbio.2010.03.022
  11. Jeon, W.T., K.Y. Seong, M.T. Kim, G.J. Oh, I.S. Oh, and U.G. Kang. 2010. Changes of soil physical properties by glomalin concentration and rice yield using different green manure crops in paddy. Korean J. Soil Sci. Fert. 43:119-123.
  12. Kieft, T.L., E. Wilch, K. O'connor, D.B. Ringelberg, and D.C. White. 1997. Survival and phospholipid fatty acid profiles of surface and subsurface bacteria in natural sediment microcosms. Appl. Environ. Microbiol. 63:1531-1542.
  13. Lee, Y.H. and H.D. Yun. 2011. Changes in microbial community of agricultural soils subjected to organic farming system in Korean paddy fields with no-till management. J. Korean Soc. Appl. Biol. Chem. 54(3):434-441. https://doi.org/10.3839/jksabc.2011.067
  14. Lee, Y.H. and H. Kim. 2011. Response of soil microbial communities to different farming systems for upland soybean cultivation. J. Korean Soc. Appl. Biol. Chem. 54(3):423-433. https://doi.org/10.3839/jksabc.2011.066
  15. Lee, Y.H. and S.K. Ha. 2011. Impacts of chemical properties on microbial population from upland soils in Gyeongnam Province. Korean J. Soil Sci. Fert. 44:242-247. https://doi.org/10.7745/KJSSF.2011.44.2.242
  16. Lee, Y.H., M.K. Kim, and Y.S. Ok. 2012. The relationship between microbial characteristics and glomalin concentrations in paddy soils of Gyeongnam Province. Korean J. Soil Sci. Fert. 45(5):792-797. https://doi.org/10.7745/KJSSF.2012.45.5.792
  17. Lee, Y.H., S.T. Lee, M.A. K.P. Hong, S.D. Lee, J.H. Kim, Y.S. Ok, M.K. Kim, and H.R. Kim. 2013. Long-term variations of chemical properties in controlled horticultural soils of Gyeongnam Province. Korean J. Soil Sci. Fert. 46(5):308-312. https://doi.org/10.7745/KJSSF.2013.46.5.308
  18. Mechri, B., H. Chehab, F. Attia, F.B. Mariem, M. Braham, and M. Hammami. 2010. Olive mill wastewater effects on the microbial communities as studied in the field of olive trees by analysis of fatty acid signatures. Eur. J. Soil Bio. l46:312-318. https://doi.org/10.1016/j.ejsobi.2010.06.001
  19. Min, S.G., S.H. Lee, S.H. Nam, Y.U. Choi, S.Y. Lee, S.S. Park, S.T. Lee, E.S. Kim, W.D. Song, and Y.H. Lee. 2011. Effect of different cultivation systems on soil glomalin content and nutrient uptake of strawberry in controlled horticultural land. Korean J. Soil Sci. Fert. 44:452-456. https://doi.org/10.7745/KJSSF.2011.44.3.452
  20. NIAST. 2010. Methods of analysis of soil and plant. National Institute of Agricultural Science and Technology, Suwon, Korea (In Korean).
  21. Olsson, P.A., R. Francis, D.J. Read, and B. Soderstrom. 1998. Growth of arbuscular mycorrhizal mycelium in calcareous dune sand and its interaction with other soil micro-organisms as estimated by measurement of specific fatty acids. Plant Soil 201:9-16. https://doi.org/10.1023/A:1004379404220
  22. Rillig, M.C. 2004. Arbuscular mycorrhizae, glomalin, and soil aggregation. Can. J. Soil Sci. 84:355-363. https://doi.org/10.4141/S04-003
  23. Rilling, M.C., E.R. Lutgen, P.W. Ramsey, J.N. Klironomos, and J.E. Gannon. 2005. Microbiota accompanying different arbuscular mycorrhizal fungal isolates influence soil aggregation. Pedobiologis 49:251-259. https://doi.org/10.1016/j.pedobi.2004.11.003
  24. Rillig, M.C., P.W. Ramsey, S. Morris, and E.A. Paul. 2003. Glomalin, an arbuscular-mycorrhizal fungal soil protein, responds to land-use change. Plant Soil volume:293-299.
  25. SAS. 2006. SAS enterprise guide Version 4.1. SAS Inst., Cary, NC.
  26. Schutter, M.E. and R.P. Dick. 2000. Comparison of fatty acid methyl ester (FAME) methods for characterizing microbial communities. Soil Sci. Soc. Am. J. 64:1659-1668. https://doi.org/10.2136/sssaj2000.6451659x
  27. Vance, E.D., P.C. Brookes, and D.S. Jenkinson. 1987. An extraction method for measuring soil microbial biomass carbon. Soil Biol. Biochem. 19:703-707. https://doi.org/10.1016/0038-0717(87)90052-6
  28. Vodnik, D., H. Grcman, I. Macek, J.T. van Elteren, and M. Kovacevic. 2008. The contribution of glomalin-related soil protein to Pb and Zn sequestration in polluted soil. Sci. Total Environ. 392:130-136. https://doi.org/10.1016/j.scitotenv.2007.11.016
  29. Wilson, G.W.T., C.W. Rice, M.C. Rillig, A. Springer, and D.C. Hartnett. 2009. Soil aggregation and carbon sequestration are tightly correlated with the abundance of arbuscular mycorrhizal fungi:results from long-term field experiments. Ecol. Lett. 12:452-I461. https://doi.org/10.1111/j.1461-0248.2009.01303.x
  30. Wright, S.F. and A. Upadhyaya. 1996. Extraction of an abundant and unusual protein from soil and comparison with hyphal protein from aruscular mycorrhizal fungi. Soil Sci. 161(9): 575-596. https://doi.org/10.1097/00010694-199609000-00003
  31. Wright, S.F. and R.L. Anderson. 2000. Aggregate stability and glomalin in alternative crop rotations for the central Great Plains. Biol. Fertil. Soils 31:249-253. https://doi.org/10.1007/s003740050653
  32. Wright, S.F., J.L. Starr, and I.C. Paltineanu. 1999. Changes in aggregate stability and concentration of glomalin during tillage management transition. 63:1825-1829. https://doi.org/10.2136/sssaj1999.6361825x
  33. Wright, S.F., K.A. Nichols, and W.F. Schmidt. 2006. Comparison of efficacy of three extractants to solubilize glomalin on hyphae and in soil. Chemosphere 64:1219-1224. https://doi.org/10.1016/j.chemosphere.2005.11.041
  34. Wright, S.F., M. Franke-Snyder, J.B. Morton, and A. Upadhyaya. 1996. Time-course study and partial characterization of a protein on hyphae of arbuscular mycorrhizal fungi during active colonization of roots. Plant Soil 181:193-203. https://doi.org/10.1007/BF00012053
  35. Wright, S.F., V.S. Green, and M.A. Cavigelli. 2007. Glomalin in aggregate size classes from three different farming systems. Soil Till. Res. 94:546-549. https://doi.org/10.1016/j.still.2006.08.003
  36. Zelles, L. 1997. Phospholipid fatty acid profiles in selected members of soil microbial communities. Chemosphere 35:275-294. https://doi.org/10.1016/S0045-6535(97)00155-0
  37. Zhang, S., Q. Li, X. Zhang, K. Wei, L. Chen, and W. Liang. 2012. Effects of conservation tillage on soil aggregation and aggregate binding agents in black soil of Northeast China. Soil Till. Res. 124:196-202. https://doi.org/10.1016/j.still.2012.06.007