• Title/Summary/Keyword: Software Tools

Search Result 1,231, Processing Time 0.03 seconds

European Experience in Implementing Innovative Educational Technologies in the Field of Culture and the Arts: Current Problems and Vectors of Development

  • Kdyrova, I.O.;Grynyshyna, M.O.;Yur, M.V.;Osadcha, O.A.;Varyvonchyk, A.
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.5
    • /
    • pp.39-48
    • /
    • 2022
  • The main purpose of the work is to analyze modern innovative educational practices in the field of culture and art and their effectiveness in the context of the spread of digitalization trends. The study used general scientific theoretical methods of analysis, synthesis, analogy, comparative, induction, deduction, reductionism, and a number of others, allowing you to fully understand the pattern of modern modernization processes in a long historical development and demonstrate how the rejection of the negativity of progress allows talented artists to realize their own potential. The study established the advantages and disadvantages of involving innovative technologies in the educational process on the example of European experience and outlined possible ways of implementing digitalization processes in Ukrainian institutions of higher education, formulated the main difficulties encountered by teachers and students in the use of technological innovation in the pandemic. The rapid development of digital technologies has had a great impact on the sphere of culture and art, both visual, scenic, and musical in all processes: creation, reproduction, perception, learning, etc. In the field of art education, there is a synthesis of creative practices with digital technologies. In terms of music education, these processes at the present stage are provided with digital tools of specially developed software (music programs for composition and typing of musical text, recording, and correction of sound, for quality listening to the whole work or its fragments) for training programs used in institutional education and non-institutional learning as a means of independent mastering of the theory and practice of music-making, as well as other programs and technical tools without which contemporary art cannot be imagined. In modern stage education, the involvement of video technologies, means of remote communication, allowing realtime adjustment of the educational process, is actualized. In the sphere of fine arts, there is a transformation of communicative forms of interaction between the teacher and students, which in the conditions of the pandemic are of two-way communication with the help of information and communication technologies. At this stage, there is an intensification of transformation processes in the educational industry in the areas of culture and art.

Big Data Analytics in RNA-sequencing (RNA 시퀀싱 기법으로 생성된 빅데이터 분석)

  • Sung-Hun WOO;Byung Chul JUNG
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.55 no.4
    • /
    • pp.235-243
    • /
    • 2023
  • As next-generation sequencing has been developed and used widely, RNA-sequencing (RNA-seq) has rapidly emerged as the first choice of tools to validate global transcriptome profiling. With the significant advances in RNA-seq, various types of RNA-seq have evolved in conjunction with the progress in bioinformatic tools. On the other hand, it is difficult to interpret the complex data underlying the biological meaning without a general understanding of the types of RNA-seq and bioinformatic approaches. In this regard, this paper discusses the two main sections of RNA-seq. First, two major variants of RNA-seq are described and compared with the standard RNA-seq. This provides insights into which RNA-seq method is most appropriate for their research. Second, the most widely used RNA-seq data analyses are discussed: (1) exploratory data analysis and (2) pathway enrichment analysis. This paper introduces the most widely used exploratory data analysis for RNA-seq, such as principal component analysis, heatmap, and volcano plot, which can provide the overall trends in the dataset. The pathway enrichment analysis section introduces three generations of pathway enrichment analysis and how they generate enriched pathways with the RNA-seq dataset.

Comparison of Normative Percentiles of Brain Volume Obtained from NeuroQuant vs. DeepBrain in the Korean Population: Correlation with Cranial Shape (한국 인구에서 NeuroQuant와 DeepBrain에서 측정된 뇌 용적의 정상규준 백분위수 비교: 두개골 형태와의 연관성)

  • Mi Hyun Yang;Eun Hee Kim;Eun Sun Choi;Hongseok Ko
    • Journal of the Korean Society of Radiology
    • /
    • v.84 no.5
    • /
    • pp.1080-1090
    • /
    • 2023
  • Purpose This study aimed to compare the volume and normative percentiles of brain volumetry in the Korean population using quantitative brain volumetric MRI analysis tools NeuroQuant (NQ) and DeepBrain (DB), and to evaluate whether the differences in the normative percentiles of brain volumetry between the two tools is related to cranial shape. Materials and Methods In this retrospective study, we analyzed the brain volume reports obtained from NQ and DB in 163 participants without gross structural brain abnormalities. We measured threedimensional diameters to evaluate the cranial shape on T1-weighted images. Statistical analyses were performed using intra-class correlation coefficients and linear correlations. Results The mean normative percentiles of the thalamus (90.8 vs. 63.3 percentile), putamen (90.0 vs. 60.0 percentile), and parietal lobe (80.1 vs. 74.1 percentile) were larger in the NQ group than in the DB group, whereas that of the occipital lobe (18.4 vs. 68.5 percentile) was smaller in the NQ group than in the DB group. We found a significant correlation between the mean normative percentiles obtained from the NQ and cranial shape: the mean normative percentile of the occipital lobe increased with the anteroposterior diameter and decreased with the craniocaudal diameter. Conclusion The mean normative percentiles obtained from NQ and DB differed significantly for many brain regions, and these differences may be related to cranial shape.

A Software Architecture for Supporting Dynamic Collaboration Environment on the Internet (인터넷 상에서의 동적인 협업 환경의 지원을 위한 소프트웨어 구조)

  • 이장호
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.9 no.2
    • /
    • pp.146-157
    • /
    • 2003
  • Our experience with Internet-based scientific collaboratories indicates that they need to be user-extensible, allow users to add tools and objects dynamically to workspaces, per mit users to move work dynamically between private and shared workspaces, and be easily accessible on the Internet. We present the software architecture of a development environment, called Collaboratory Builder's Environment(CBE), for building collaboratories to meet such needs. CBE provides user extensibility by allowing a collaboratory to be constructed as a collection of collaborative applets. To support dynamic reconfiguration of shared workspaces, CBE uses the metaphor of room that can contain applets, users, and arbitrary data objects. Rooms can be used not only for synchronous collaboration but also for asynchronous collaboration by supporting persistence. For the access over the Internet room participants are given different roles with appropriate access rights. A prototype of the model has been implemented in Java and can be run from a Java-enabled Web browser. The implemented system had been used by 95 users including 79 space scientists around the world in a scientific campaign that ran for 4 days. The usage evaluation of the campaign is also presented.

Analysis of MPEG-4 Encoder for Object-based Video (실시간 객체기반 비디오 서비스를 위한 MPEG-4 Encoder 분석)

  • Kim Min Hoon;Jang Euee Seon;Lee Sun young;Moon Seok ju
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.41 no.1
    • /
    • pp.13-20
    • /
    • 2004
  • In this paper, we have analyzed the current MPEG-4 video encoding tools and proposed efcient coding techniques that reduce the complexity of the encoder. Until recently, encoder optimization without shape coding has been a major concern in video for wire/wireless low bit rate coding services. Recently, we found out that the computational complexity of MPEG-4 shape coding plays a very important role in the object-based coding through experiments. We have made an experiment whether we could get optimized object-based coding method through successfully combining latest optimized texture coding techniques with our proposed optimized shape coding techniques. In texture coding, we applied the MVFAST method for motion estimation. We chose not to use IVOPF(Intelligent VOP Formation) but to use TRB(Tightest Rectangular Boundary) for positioning VOP and, finally, to eliminate the spiral search of shape motion estimation to reduce the complexity in shape coding. As a result of experiment, our proposed scheme achieved improved time complexity over the existing reference software by $57.3\%$ and over the optimized method on which only shape coding was applied by $48.7\%$, respectively.

Establishment of Rebar Quantity Estimation in BIM-based Initial Design Phase (BIM기반 초기 설계 단계 철근 물량 산출 프로세스 구축)

  • Song, Chi-Ho;Kim, Chee-Kyeong;Lee, Si Eun;Choi, Hyunchul
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.5
    • /
    • pp.447-454
    • /
    • 2016
  • In the meantime, looking at the present status of how to estimationte the quantity of rebar based on 3D BIM getting the limelight in these days, commercial BIM tools provide rebar modeling functions however it takes a vast amount of modeling time for modeling of rebar in use of that function hence there is no BIM software at present for practical use. Therefore, in this study, we organized and presented a practical rebar quantity estimationtion process in BIM-based design work-site and intended to develop a program named Rebar Automatic Arrangement Program - hereinafter called RAAP - which enables automatic rebar arrangement based on much more precise cross-sectional information of bars in column, beam, slab and wall than the one from existing 2D method under the conditions without any cross-sectional information in the initial design phase. In addition, we intended to establish rebar quantity estimationtion process in the initial design phase through interworking of modeling & quantity estimationtion functions in consideration of joint, anchoring length of BuilderHUB as a BIM software with RAAP. The results from this study are practical in developing a technology that is able to estimationte quantity with more improved reliability than the one from existing 2D-based methods with less effort when the quantity of framework is estimationted in the uncompleted state of cross-sectional design for structural members in the initial design phase of a construction project. And it is expected that it could be utilized as a basic study from which a reasonable quantity estimationtion program can be established in the initial design phase.

Development of a Software Do-TRIZ for TRIZ Learning (트리즈 학습용 소프트웨어 Do-TRIZ 개발)

  • Kim, Eun-Gyung;Koo, Bon-Chul;Kim, Young-Jin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.8
    • /
    • pp.1883-1892
    • /
    • 2015
  • TRIZ is a theory of inventive problem solving. Recently the importance of creative capabilities is being emphasized and many successful cases using TRIZ are being introduced, therefore interest in TRIZ has been increasing. But TRIZ is not easy to learn alone compared to other creative thinking tools. Although it is effective to learn TRIZ through various cases, it is not easy for beginners to experience those many cases. Therefore, we developed a software called Do-TRIZ for TRIZ learning. Do-TRIZ provides descriptions and various examples of key concepts to make it easier for beginners to learn TRIZ. Also, the learners can add new cases continuously on Do-TRIZ. Especially, process-based problem solving modules have been implemented on Do-TRIZ, in order to make it possible to solve problems based on technical contradiction, physical contradiction, and IFR(Ideal Final Result). The learners can use the modules to solve their problems and to share the results. Also, we implemented Do-TRIZ Memo app that works with Do-TRIZ.

In Vitro Assessment of MRI Safety at 1.5 T and 3.0 T for Bone-Anchored Hearing Aid Implant (Bone-Anchored Hearing Aid Implant에 대한 1.5 T와 3.0 T에서 MRI 안전성의 생체외 평가)

  • Yeon, Kyoo-Jin;Kim, Hyun-Soo;Lee, Seung-keun;Lee, Tae-Soo
    • Journal of radiological science and technology
    • /
    • v.40 no.1
    • /
    • pp.19-25
    • /
    • 2017
  • The aim of this study was to evaluate Magnetic Resonance Imaging safety by measuring the translational attraction, torque and susceptibility artifact for Bone-Anchored Hearing Aid (BAHA) implant at 1.5 T and 3.0 T MRI by standard criteria. In vitro assessment tools were made of acrylic-resin by American Society for Testing and Materials (ASTM) F2052-06 and F2119-07 standard. Translational attraction of BAHA implant was measured by the maximum deflection angle at 96 cm position, where the magnetically induced deflection was the greatest. The torque was assessed by the qualitative criteria of evaluating the alignment and rotation pattern, when the BAHA implant was positioned on a line with $45^{\circ}$ intervals inside the circular container in the center of the bore. The susceptibility artifact images were obtained using the hanged test tool, which was filled with $CuSO_4$ solution. And then the artifact size was measured using Susceptibility A rtifact Measurement (SA M) software. In results, the translational attraction was 0 mm at both 1.5 T and 3.0 T and the torque was 0(no torque) at 1.5 T, and +1(mild torque) at 3.0 T. The size of susceptibility artifacts was between 13.20 mm and 38.91 mm. Therefore, The BAHA implant was safe for the patient in clinical MR environment.

Sharpness Evaluation of UAV Images Using Gradient Formula (Gradient 공식을 이용한 무인항공영상의 선명도 평가)

  • Lee, Jae One;Sung, Sang Min
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.1
    • /
    • pp.49-56
    • /
    • 2020
  • In this study, we analyzed the sharpness of UAV-images using the gradient formula and produced a MATLAB GUI (Graphical User Interface)-based sharpness analysis tool for easy use. In order to verify the reliability of the proposed sharpness analysis method, sharpness values of the UAV-images measured by the proposed method were compared with those by measured the commercial software Metashape of the Agisoft. As a result of measuring the sharpness with both tools on 10 UAV-images, sharpness values themselves were different from each other for the same image. However, there was constant bias of 011 ~ 0.20 between two results, and then the same sharpness was obtained by eliminating this bias. This fact proved the reliability of the proposed sharpness analysis method in this study. In addition, in order to verify the practicality of the proposed sharpness analysis method, unsharp images were classified as low quality ones, and the quality of orthoimages was compared each other, which were generated included low quality images and excluded them. As a result, the quality of orthoimage including low quality images could not be analyzed due to blurring of the resolution target. However, the GSD (Ground Sample Distance) of orthoimage excluding low quality images was 3.2cm with a Bar target and 4.0cm with a Siemens star thanks to the clear resolution targets. It therefore demonstrates the practicality of the proposed sharpness analysis method in this study.

Design of an Integrated Monitoring System for Constructional Structures Based on Mobile Cloud in Traditional Towns with Local Heritage

  • Min, Byung-Won;Oh, Sang-Hoon;Oh, Yong-Sun;Okazaki, Yasuhisa;Yoo, Jae-Soo;Park, Sun-Gyu;Noh, Hwang-Woo
    • International Journal of Contents
    • /
    • v.11 no.2
    • /
    • pp.37-49
    • /
    • 2015
  • Sensors, equipment, ICT facilities and their corresponding software have a relatively short lifetime relative to that of constructional structure, so these devices have to be continuously fixed or exchanged during maintenance and management. Furthermore, software or analysis tools should be periodically upgraded according to advances in ICT and analysis technology. Conventional monitoring systems have serious problems in that it is difficult for site engineers to modify or upgrade hardware and analysis algorithms. Moreover, we depend on the original system developer when we want to modify or upgrade inner program structures. In this paper, we propose a novel design for integrated maintenance and management of a monitoring system by applying the mobile cloud concept. The system is intended for use in disaster prevention of constructional structures, including bridges, tunnels, and in traditional buildings in a local heritage village, we analyze the status of these structures over a long term or a short-term period as well as in disaster situations. Data are collected over a mobile cloud and future expectations are analyzed according to probabilistic and statistical techniques. We implement our integrated monitoring system to solve the existing problems mentioned above. The final goal of this study is to design and implement a monitoring system for more than 10,000 structures spread within Korea. Furthermore, we can specifically apply the monitoring system presented here to a bridge made from timber in Asan Oeam Village and a traditional house in Andong Hahoe Village to monitor for possible disasters. The entire system design and implementation can be developed on the LinkSaaS platform and the monitoring services can also be implemented on the platform. We prove that the proposed system has good performance by performing a TTA authentication test, web accommodation test, and operation test using emulated data.