DOI QR코드

DOI QR Code

In Vitro Assessment of MRI Safety at 1.5 T and 3.0 T for Bone-Anchored Hearing Aid Implant

Bone-Anchored Hearing Aid Implant에 대한 1.5 T와 3.0 T에서 MRI 안전성의 생체외 평가

  • Yeon, Kyoo-Jin (Department of Radiology, Samsung Medical Center) ;
  • Kim, Hyun-Soo (Department of Radiology, Samsung Medical Center) ;
  • Lee, Seung-keun (Department of Radiology, Samsung Medical Center) ;
  • Lee, Tae-Soo (Department of Biomedical Engineering, Chungbuk National University)
  • 연규진 (삼성서울병원 영상의학과) ;
  • 김현수 (삼성서울병원 영상의학과) ;
  • 이승근 (삼성서울병원 영상의학과) ;
  • 이태수 (충북대학교 의용생체공학과)
  • Received : 2017.01.19
  • Accepted : 2017.03.15
  • Published : 2017.03.31

Abstract

The aim of this study was to evaluate Magnetic Resonance Imaging safety by measuring the translational attraction, torque and susceptibility artifact for Bone-Anchored Hearing Aid (BAHA) implant at 1.5 T and 3.0 T MRI by standard criteria. In vitro assessment tools were made of acrylic-resin by American Society for Testing and Materials (ASTM) F2052-06 and F2119-07 standard. Translational attraction of BAHA implant was measured by the maximum deflection angle at 96 cm position, where the magnetically induced deflection was the greatest. The torque was assessed by the qualitative criteria of evaluating the alignment and rotation pattern, when the BAHA implant was positioned on a line with $45^{\circ}$ intervals inside the circular container in the center of the bore. The susceptibility artifact images were obtained using the hanged test tool, which was filled with $CuSO_4$ solution. And then the artifact size was measured using Susceptibility A rtifact Measurement (SA M) software. In results, the translational attraction was 0 mm at both 1.5 T and 3.0 T and the torque was 0(no torque) at 1.5 T, and +1(mild torque) at 3.0 T. The size of susceptibility artifacts was between 13.20 mm and 38.91 mm. Therefore, The BAHA implant was safe for the patient in clinical MR environment.

본 연구는 1.5 T와 3.0 T Magnetic Resonance Imaging에서 Bone-Anchored Hearing Aid (BAHA) implant의 수평인력, 회전력, 그리고 자화감수성 인공물의 크기를 표준측정 방법에 의해 측정하여 MR 안전성을 평가하였다. BAHA implant의 고정장치와 지지대는 0.5%의 철(iron)이 포함 된 티타늄으로 만들어졌으며, 길이는 10 mm (고정장치 4 mm, 지지대 6 mm), 최대 직경은 7.0 mm이다. 수평인력 측정장치와 자화감수성 인공물 측정장치는 각각 American Society for Testing and Materials (ASTM) F2052-06, F2119-07을 참조하여 아크릴을 이용해 제작했으며, 회전력 측정은 원형 플라스틱 용기를 이용한 측정장치를 사용하였다. 자기유도에 의한 BAHA implnat의 수평인력은 주자장이 가장 큰 지점인 96 cm지점에서 최대 변위각을 측정하였고, 회전력은 원형용기 내부의 $45^{\circ}$간격의 실선 위에 놓았을 때 나타난 회전형태를 정성적 평가기준으로 측정하였다. 자화감수성 인공물은 황산구리($CuS0_4$) 용액이 채워진 용기의 중앙에 BAHA implant를 매달아 영상을 획득한 후 Susceptibility Artifact Measurement (SAM) software를 이용해 크기를 측정하였다. 측정결과 수평인력은 1.5 T와 3.0 T에서 변위각과 변위력은 모두 0으로 나타났다. 회전력은 1.5 T에서는 0(no torque), 3.0 T에서는 +1(mild torque)로 나타났다. 자화감수성 인공물은 최소 13.20 mm, 최대 38.91 mm의 크기로 나타났다. 따라서 1.5 T, 3.0 T의 MR 환경에서 BAHA implant는 환자에게 안전하다.

Keywords

References

  1. Snik F.M., Mylanus E.A., Proops D.W., Wolfaardt J.F., Hodgetts W.E., Somers T., TTellstrTm A.: Consensus statements on the BAHA system: where do we stand at present?. Annals of Otology, Rhinology & Laryngology, 114(12_suppl), 2-12, 2005
  2. Shellock F.G., Schatz C.J.: Metallic otologic implants: in vitro assessment of ferromagnetism at 1.5T, American Journal of NeuroRadiology, 12(2), 279-281, 1991
  3. Shellock F.G., Crues J.V.: Hight-field strength MR imaging and metallic biomedical implants: an ex vivo evaluation of deflection forces, American Journal of Radiology, 151(2), 389-392, 1988
  4. Shellock F.G., Morisoli S.M.: Ex vivo evaluation of ferromagnetism and artifacts of cardiac occluders exposed to a 1.5T MR system, Journal of Magnetic Resonance Imaging, 4(2), 213-215, 1994 https://doi.org/10.1002/jmri.1880040220
  5. Shellock F.G., Morisoli S.M.: Ex vivo evaluation of ferromagnetism, heating, and artifacts for heart valve prostheses exposed to a 1.5 Tesla MR system, Journal of Magnetic Resonance Imaging, 4(5), 756-758, 1994 https://doi.org/10.1002/jmri.1880040521
  6. Syms M.J., Peterman G.W.: Vibratory sample magnetometry of middle ear prostheses and manufacturing materials, Otology & Neurotology, 22(4), 487-491, 2001 https://doi.org/10.1097/00129492-200107000-00013
  7. Fritsch M.H., Naumann I.C., Mosier K.M.: BAHA Devices and Magnetic Resonance Imaging Scanners, Otology & neurotology, 29(8), 1095-1099, 2008 https://doi.org/10.1097/MAO.0b013e31818201fd
  8. Arndt S., Kromeier J., Berlis A., Maier W., Laszig R., Aschendorff A.: Imaging procedures after bone-anchored hearing aid implantation, Laryngoscope, 117(10), 1815-1818, 2007 https://doi.org/10.1097/MLG.0b013e3180f62b5e
  9. ASTM F2052-06: Standard test method for measurement of magnetically induced displancement force on medical devices in the magnetic resonance environment, American Society for Testing and Materials, West Conshohocken, 2006
  10. ASTM F2119-07: Standard test method for evaluation of MR image artifacts from passive implants, American Society for Testing and Materials, West Conshohocken, 2006
  11. Shellock F.G.: Biomedical implants and devices: Assessment of magnetic field interactions with a 3.0-Tesla MR system, Journal of Magnetic Resonance Imaging, 16(6), 721-732, 2002 https://doi.org/10.1002/jmri.10207
  12. Shellock F.G., Valencerina S.: In vitro evaluation of MR imaging issues at 3T for aneurysm clips made from MP35N: findings and information applied to 155 additional aneurysm clips, American Journal of Neuroradiology, 31(4), 615-619, 2010 https://doi.org/10.3174/ajnr.A1918
  13. Guttler F., Heinrich A., TeichgrTber U.: Software development for the determination of susceptibility artefacts in MRI after ASTM F2119, Biomedical Engineering/Biomedizinische Technik, 57(SI-1 Track-B), 480-480, 2012
  14. ASTM F2052: Standard test method for measurement of magnetically in-duced displacement force on passive implants in the magnetic resonance environment, In: Annual book of ASTM standards, 13.01, West Conshohocken
  15. GTrgTlT S., Ayyildiz S., Kamburoglu K., GTkTe S., Ozen T.: Effect of orthodontic brackets and different wires on radiofrequency heating and magnetic field interactions during 3-T MRI, Dentomaxillofacial Radiology, 43(2), 20130356, 2014 https://doi.org/10.1259/dmfr.20130356
  16. Olsrud J., LTtt J., Brockstedt S., Romner B., BTTrkman-Burtscher I.M.: Magnetic resonance imaging artifacts caused by aneurysm clips and shunt valves: dependence on field strength (1.5 and 3 T) and imaging parameters. Journal of Magnetic Resonance Imaging, 22(3), 433-437, 2005 https://doi.org/10.1002/jmri.20391
  17. Port J.D., Pomper M.G.: Quantification and minimization of magnetic susceptibility artifacts on GRE images. Journal of computer assisted tomography, 24(6), 958-964, 2000 https://doi.org/10.1097/00004728-200011000-00024
  18. Bartels L.W., Bakker C.J., Viergever M.A.: Improved lumen visualization in metallic vascular implants by reducing RF artifacts. Magnetic resonance in medicine, 47(1), 171-180, 2002 https://doi.org/10.1002/mrm.10004
  19. Shellock FG, Crues JV: MR Procedures: Biologic Effects, Safety, and Patient Care 1, Radiology, 232(3), 635-652, 2004 https://doi.org/10.1148/radiol.2323030830