• Title/Summary/Keyword: Software Development Cycle

Search Result 297, Processing Time 0.029 seconds

A Quantitative Measurement and Evaluation of Software Product Quality (Software 품질의 정량적 측정과 평가)

  • Im Dae-Heug
    • Management & Information Systems Review
    • /
    • v.18
    • /
    • pp.201-222
    • /
    • 2006
  • As the competition between countries has become higher and the notion of software quality has been widely spread. it has been necessary to develop technologies that can ensure and produce high quality software. With the advent of information-oriented society. quality control has to transfer to the quality control activities focused on software system instead of those activities focused on hardware system. If so, how do we get to handle the quality control on the basis of the new approach. Also, as software applications have grown. so too has the importance of software quality. In order to manage software quality, the technology to specify and evaluate both the software product quality and development process quality objectively quantitatively is most important. To produce products of good quality, we need a more progressive quality control system according to the need of software development life cycle. In other words, we do software right the first time or build quality in the process. On the basis intermediate and final time or build quality in the process. On the basis of data achieved, we can evaluate the products according to the consequences of the data, What are the problems to contrive the software quality control system?, we con promote the quality of products. To achieved that goal, we con provide a suitable the technique and method of software quality control.

  • PDF

A Study on Method for software Quality control (소프트웨어 품질관리 방법에 관한 연구)

  • Im Dae-Heug;Jang Young-Suk
    • Management & Information Systems Review
    • /
    • v.15
    • /
    • pp.245-262
    • /
    • 2004
  • As the competition between countries has become higher and the notion of software quality has been widely spread. it has been necessary to develop technologies that can ensure and produce high quality software. With the advent of information-oriented society. quality control has to transfer to the quality control activities focused on software system instead of those activities focused on hardware system. If so, how do we get to handle the quality control on the basis of the new approach. Also, as software applications have grown, so too has the importance of software quality. In order to manage software quality, the technology to specify and evaluate both the software product quality and development process quality objectively quantitatively is most important. To produce products of good quality, we need a more progressive quality control system according to the need of software development life cycle. In other words, we do software right the first time or build quality in the process. On the basis intermediate and final time or build quality in the process. On the basis of data achieved, we can evaluate the products according to the consequences of the data, What are the problems to contrive the software quality control system?, we con promote the quality of products. To achieved that goal, we con provide a suitable the technique and method of software quality control.

  • PDF

Automotive Embedded System Software Development and Validation with AUTOSAR and Model-based Approach (AUTOSAR와 모델기반 기법을 적용한 차량 임베디드 시스템 소프트웨어의 개발 및 검증 기법)

  • Kum, Dae-Hyun;Son, Jang-Kyung;Kim, Myung-Jin;Son, Joon-Woo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.12
    • /
    • pp.1179-1185
    • /
    • 2007
  • This paper presents a new approach to automotive embedded systems development and validation. Recently automotive embedded systems become even more complex and the product life cycle is getting reduced. To overcome these problems AUTOSAR, a standardized software platform and component based approach, was introduced. Model-based approach has been widely applied in the development of embedded systems and has strong benefits such as early validation and automated testing. In this paper cooperative development and validation of AUTOSAR and model-based approach are introduced and automated testing techniques are proposed. With the proposed techniques we can improve complexity management through increased reuse and exchangeability of software module and automated testing is realized.

Product Line Development Process for Mobile Software based on Product Line (프로덕트 라인 기반의 모바일 소프트웨어 개발 프로세스)

  • Kim Haeng-Kon;Son Lee-Kyeong
    • The KIPS Transactions:PartD
    • /
    • v.12D no.3 s.99
    • /
    • pp.395-408
    • /
    • 2005
  • Ubiquitous computing spans a very broad range of technologies and needs very complicated user's requirements. There are many scenarios and technologies involved in ubiquitous computing. We need new software development tools and methodology to meet the requirements. A software product line is one of promising new technology for it. A software product line is a set of software intensive systems that share a common, managed set of features satisfying the specific needs of a particular market segment or mission and that are developed from a common set of core assets. Software architecture-based development is the exploration and maturation of the role of software architecture in the product line life cycle. In this thesis, we identify the foundational concepts underlying software product lines and the essential activities to develop the mobile application systems. So, we define, design, and implement the Mobile Application System Architecture(MASA) that includes the development process for applying into mobile business domain and encompass scoping and gathering requirements for the Product line based on Component Based Development(CBD).

Verification and Validation to develop Safety-critical Software (안전에 중요한 소프트웨어 개발을 위한 확인 및 검증)

  • Lee Jong-Bok;Suh Sang-Moon;Keum Jong-Yong
    • Proceedings of the Korean Society for Quality Management Conference
    • /
    • 2004.04a
    • /
    • pp.114-119
    • /
    • 2004
  • Software verification and validation(V&V) is a means to develop high-quality software and assure safety and reliability for software. Also, we can achieve the desired software quality through systematic V&V activities. The software to be applied safety critical system like nuclear power plants is required to setup the V&V methodology that comply with licensing requirements for nuclear power plants and should be performed V&V activities according to it. In this paper, we classified safety-critical, safety-related and non-safety for software according to safety function to be peformed and define V&V activities to be applied software grade. Also, we defined V&V activities, procedures and documentation for each phase of software development life cycle and showed techniques and management to perform V&V. Finally, we propose the V&V framework to be applied software development of SMART(System-integrated Modular Advanced ReacTor) MMIS (Man-Machine Interface System) and to comply with domestic licensing requirements.

  • PDF

Main Function of RACE Software for Environmental Assessment of Electric Motor Unit (전동차 환경성 진단용 RACE프로그램의 주요기능)

  • Kim, Yong-Ki;Lee, Jae-Young;Seo, Min-Seok;Choi, Yo-Han
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.1244-1249
    • /
    • 2007
  • Pursuing sustainable development throughout society and industry and the field of environmental policy, each international organization or nation has performed international standardization projects on environmental management activities for their system as well as environmental assessment for a product such as life cycle assessment (LCA) and life cycle inventory database (LCI DB), and the environmental aspects have been increasingly demanded as crucial evaluation specifications. Moreover, the conventional environmental policy, which represents the direct-control, has been more dependent on the market forces and product itself after the Climate Change Convention., and the Integrated Product Policy (IPP, EU) is applied vigorously to strengthen global competitiveness of a product and to achieve the effect of environmental improvement for it. According to change of the international railway market, the value of Eco-Design has been increasingly important in developed countries including EU. Thus, each country is establishing its own guidelines, software and database for each product, and developing new policies through Eco-Design with practical results in marketing. To react this and develop Korean railway as an environment-friendly industry with priority to other transportation system as well as maintain high place in technology, the direction of RACE software development of main function is introduced, which is exclusively used for EMU to assess both environmental and economic aspects with LCA and eco-efficiency (EE).

  • PDF

Design and Qualification of FPGA-based Controller applying HPD Development Life-Cycle for Nuclear Instrumentation and Control System (HPD 개발수명주기를 적용한 원전 FPGA 기반 제어기의 설계와 검증)

  • Lee, Joon-Ku;Jeong, Kwang-Il;Park, Geun-Ok;Sohn, Kwang-Young
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.9 no.6
    • /
    • pp.681-687
    • /
    • 2014
  • Nuclear industries have faced unfavorable circumstances such as an obsolescence of the instrumentation and control system, and therefore nuclear society is striving to resolve this issue fundamentally. IEC and IAEA judge that FPGA technology is a good replacement for Programmable Logic Controller (PLC) of Nuclear Instrumentation and Control System. FPGAs are currently highlighted as an alternative means for obsolete control systems. Because the main function inside an FPGA is initially developed as software, good software quality can impact the reliability of an FPGA-based controller. Therefore, it is necessary to establish a software development aspect strategy that enhances the reliability of an FPGA-based controller. In terms of software development, HDL-Programmed Device (HPD) Development Life Cycle is applied into FPGA-based Controller. The burn-in test and environmental(temperature) test should be performed in order to apply into nuclear instrumentation and control system. Therefore it is ensured that the developed FPGA-based controller are normally operated for 352 hours and 92 hours in test chamber of Korea Institute of Machinery and Materials (KIMM).

Improving Estimative Capability of Software Development Effort using Radial Basis Function Network (RBF 망 이용 소프트웨어 개발 노력 추정 성능향상)

  • Lee, Sang-Un;Park, Yeong-Mok;Park, Jae-Hong
    • The KIPS Transactions:PartD
    • /
    • v.8D no.5
    • /
    • pp.581-586
    • /
    • 2001
  • An increasingly important facet of software development is the ability to estimated the associated coast and effort of development early in the development life cycle. In spite of the most generally sued procedures for estimation of the software development effort and cost were linear regression analysis. As a result of the software complexity and various development environments, the software effort and cost estimates that are grossly inaccurate. The application of nonlinear methods hold the greatest promise for achieving this objects. Therefore this paper presents an RBF (radial basis function) network model that is able to represent the nonlinear relation for software development effort, The research describes appropriate RBF network modeling in the context of a case study for 24 software development projects. Also, this paper compared the RBF network model with a regression analysis model. The RBF network model is the most accuracy of all.

  • PDF

Quality Improvement by enhancing Informal Requirements with Design Thinking Methods

  • Kim, Janghwan;Kim, R. Young Chul
    • International journal of advanced smart convergence
    • /
    • v.10 no.2
    • /
    • pp.130-137
    • /
    • 2021
  • In the current software project, it is still very difficult to extract and define clear requirements in the requirement engineering. Informal requirements documents based on natural language can be interpreted in different meanings depending on the degree of understanding or maturity level of the requirements analyst. Also, Furthermore, as the project progresses, requirements continue to change from the customer. This change in requirements is a catastrophic failure from a management perspective in software projects. In the situation of frequent requirements changes, a current issue of requirements engineering area is how to make clear requirements with unclear and ambigousrequirements. To solve this problem, we propose to extract and redefine clear requirements by incorporating Design Thinking methodologies into requirements engineering. We expect to have higher possibilities to improve software quality by redefining requirements that are ambiously and unclearly defined.

A Predictive Model for Software Development Team Size and Duration Based on Function Point (기능점수 기반 소프트웨어 개발팀 규모와 개발기간 예측 모델)

  • Park, Seok-Gyu;Lee, Sang-Un
    • The KIPS Transactions:PartD
    • /
    • v.10D no.7
    • /
    • pp.1127-1136
    • /
    • 2003
  • Estimation of software project cost, effort and duration in the early stage of software development cycle is a difficult and key problem in software engineering. Most of models estimate the development effort using the function point that is measured from the requirement specification. This paper presents optimal team size and duration prediction based on function point in order to provide information that can be used as a guide in selecting the most Practical and productive team size for a software development project. We introduce to productive metrics and cost for decision criteria of ideal team size and duration. The experimental is based on the analysis of 300 development and enhancement software project data. These data sets are divide in two subgroups. One is a development project; the other is a maintenance project. As a result of evaluation by productivity and cost measured criteria in two subgroups, we come to the conclusion that the most successful projects has small teams and minimum duration. Also, I proposed that predictive model for team sire and duration according to function point size based on experimental results. The presented models gives a criteria for necessary team site and duration according to the software size.