• Title/Summary/Keyword: Software Clustering

Search Result 321, Processing Time 0.027 seconds

A Dynamic Resource Allocation Method in Tactical Network Environments Based on Graph Clustering (전술 네트워크 환경에서 그래프 클러스터링 방법을 이용한 동적 자원 할당 방법)

  • Kim, MinHyeop;Ko, In-Young;Lee, Choon-Woo
    • Journal of KIISE:Software and Applications
    • /
    • v.41 no.8
    • /
    • pp.569-579
    • /
    • 2014
  • In a tactical-edge environment, where multiple weapon resources are coordinated together via services, it is essential to make an efficient binding between an abstract service and a resource that are needed to execute composite services for accomplishing a given mission. However, the tactical network that is used in military operation has low bandwidth and a high rate of packet loss. Therefore, communication overhead between services must be minimized to execute composite services in a stable manner in the tactical network. In addition, a tactical-edge environment changes dynamically, and it affects the connectivity and bandwidth of the tactical network. To deal with these characteristics of the tactical network we propose two service-resource reallocation methods which minimize the communication overhead between service gateways and effectively manage neutralization of gateways during distributed service coordination. We compared the effectiveness of these two - methods in terms of total communication overhead between service gateways and resource-allocation similarity between the initial resource allocation and the reallocation result.

Topic Analysis of the National Petition Site and Prediction of Answerable Petitions Based on Deep Learning (국민청원 주제 분석 및 딥러닝 기반 답변 가능 청원 예측)

  • Woo, Yun Hui;Kim, Hyon Hee
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.9 no.2
    • /
    • pp.45-52
    • /
    • 2020
  • Since the opening of the national petition site, it has attracted much attention. In this paper, we perform topic analysis of the national petition site and propose a prediction model for answerable petitions based on deep learning. First, 1,500 petitions are collected, topics are extracted based on the petitions' contents. Main subjects are defined using K-means clustering algorithm, and detailed subjects are defined using topic modeling of petitions belonging to the main subjects. Also, long short-term memory (LSTM) is used for prediction of answerable petitions. Not only title and contents but also categories, length of text, and ratio of part of speech such as noun, adjective, adverb, verb are also used for the proposed model. Our experimental results show that the type 2 model using other features such as ratio of part of speech, length of text, and categories outperforms the type 1 model without other features.

Development of IoT Service Classification Method based on Service Operation Characteristic (세부 동작 기반 사물인터넷 서비스 분류 기법 개발)

  • Jo, Jeong hoon;Lee, HwaMin;Lee, Dae won
    • Journal of Internet Computing and Services
    • /
    • v.19 no.2
    • /
    • pp.17-26
    • /
    • 2018
  • Recently, through the emergence and convergence of Internet services, the unified Internet of thing(IoT) service platform have been researched. Currently, the IoT service is constructed as an independent system according to the purpose of the service provider, so information exchange and module reuse are impossible among similar services. In this paper, we propose a operation based service classification algorithm for various services in order to provide an environment of unfied Internet platform. In implementation, we classify and cluster more than 100 commercial IoT services. Based on this, we evaluated the performance of the proposed algorithm compared with the K-means algorithm. In order to prevent a single clustering due to the lack of sample groups, we re-cluster them using K-means algorithm. In future study, we will expand existing service sample groups and use the currently implemented classification system on Apache Spark for faster and more massive data processing.

Generation of Efficient Fuzzy Classification Rules for Intrusion Detection (침입 탐지를 위한 효율적인 퍼지 분류 규칙 생성)

  • Kim, Sung-Eun;Khil, A-Ra;Kim, Myung-Won
    • Journal of KIISE:Software and Applications
    • /
    • v.34 no.6
    • /
    • pp.519-529
    • /
    • 2007
  • In this paper, we investigate the use of fuzzy rules for efficient intrusion detection. We use evolutionary algorithm to optimize the set of fuzzy rules for intrusion detection by constructing fuzzy decision trees. For efficient execution of evolutionary algorithm we use supervised clustering to generate an initial set of membership functions for fuzzy rules. In our method both performance and complexity of fuzzy rules (or fuzzy decision trees) are taken into account in fitness evaluation. We also use evaluation with data partition, membership degree caching and zero-pruning to reduce time for construction and evaluation of fuzzy decision trees. For performance evaluation, we experimented with our method over the intrusion detection data of KDD'99 Cup, and confirmed that our method outperformed the existing methods. Compared with the KDD'99 Cup winner, the accuracy was increased by 1.54% while the cost was reduced by 20.8%.

Multi-document Summarization Based on Cluster using Term Co-occurrence (단어의 공기정보를 이용한 클러스터 기반 다중문서 요약)

  • Lee, Il-Joo;Kim, Min-Koo
    • Journal of KIISE:Software and Applications
    • /
    • v.33 no.2
    • /
    • pp.243-251
    • /
    • 2006
  • In multi-document summarization by means of salient sentence extraction, it is important to remove redundant information. In the removal process, the similarities and differences of sentences are considered. In this paper, we propose a method for multi-document summarization which extracts salient sentences without having redundant sentences by way of cohesive term clustering method that utilizes co-occurrence Information. In the cohesive term clustering method, we assume that each term does not exist independently, but rather it is related to each other in meanings. To find the relations between terms, we cluster sentences according to topics and use the co-occurrence information oi terms in the same topic. We conduct experimental tests with the DUC(Document Understanding Conferences) data. In the tests, our method shows better performance of summarization than other summarization methods which use term co-occurrence information based on term cohesion of document or sentence unit, and simple statistical information.

A Hybrid Recommendation Method based on Attributes of Items and Ratings (항목 속성과 평가 정보를 이용한 혼합 추천 방법)

  • Kim Byeong Man;Li Qing
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.12
    • /
    • pp.1672-1683
    • /
    • 2004
  • Recommender system is a kind of web intelligence techniques to make a daily information filtering for people. Researchers have developed collaborative recommenders (social recommenders), content-based recommenders, and some hybrid systems. In this paper, we introduce a new hybrid recommender method - ICHM where clustering techniques have been applied to the item-based collaborative filtering framework. It provides a way to integrate the content information into the collaborative filtering, which contributes to not only reducing the sparsity of data set but also solving the cold start problem. Extensive experiments have been conducted on MovieLense data to analyze the characteristics of our technique. The results show that our approach contributes to the improvement of prediction quality of the item-based collaborative filtering, especially for the cold start problem.

Video Indexing for Efficient Browsing Environment (효율적인 브라우징 환경을 위한 비디오 색인)

  • Ko, Byong-Chul;Lee, Hae-Sung;Byun, Hye-Ran
    • Journal of KIISE:Software and Applications
    • /
    • v.27 no.1
    • /
    • pp.74-83
    • /
    • 2000
  • There is a rapid increase in the use of digital video information in recent years. Especially, user requires the environment which retrieves video from passive access to active access, to be more efficiently. we need to implement video retrieval system including video parsing, clustering, and browsing to satisfy user's requirement. In this paper, we first divide video sequence to shots which are primary unit for automatic indexing, using a hybrid method with mixing histogram method and pixel-based method. After the shot boundaries are detected, corresponding key frames can be extracted. Key frames are very important portion because they help to understand overall contents of video. In this paper, we first analyze camera operation in video and then select different number of key frames depend on shot complexity. At last, we compose panorama images from shots which are containing panning or tilting in order to provide more useful and understandable browsing environment to users.

  • PDF

Abnormal Behavior Recognition Based on Spatio-temporal Context

  • Yang, Yuanfeng;Li, Lin;Liu, Zhaobin;Liu, Gang
    • Journal of Information Processing Systems
    • /
    • v.16 no.3
    • /
    • pp.612-628
    • /
    • 2020
  • This paper presents a new approach for detecting abnormal behaviors in complex surveillance scenes where anomalies are subtle and difficult to distinguish due to the intricate correlations among multiple objects' behaviors. Specifically, a cascaded probabilistic topic model was put forward for learning the spatial context of local behavior and the temporal context of global behavior in two different stages. In the first stage of topic modeling, unlike the existing approaches using either optical flows or complete trajectories, spatio-temporal correlations between the trajectory fragments in video clips were modeled by the latent Dirichlet allocation (LDA) topic model based on Markov random fields to obtain the spatial context of local behavior in each video clip. The local behavior topic categories were then obtained by exploiting the spectral clustering algorithm. Based on the construction of a dictionary through the process of local behavior topic clustering, the second phase of the LDA topic model learns the correlations of global behaviors and temporal context. In particular, an abnormal behavior recognition method was developed based on the learned spatio-temporal context of behaviors. The specific identification method adopts a top-down strategy and consists of two stages: anomaly recognition of video clip and anomalous behavior recognition within each video clip. Evaluation was performed using the validity of spatio-temporal context learning for local behavior topics and abnormal behavior recognition. Furthermore, the performance of the proposed approach in abnormal behavior recognition improved effectively and significantly in complex surveillance scenes.

Beta-wave Correlation Analysis Model based on Unsupervised Machine Learning (비지도학습 머신러닝에 기반한 베타파 상관관계 분석모델)

  • Choi, Sung-Ja
    • Journal of Digital Convergence
    • /
    • v.17 no.3
    • /
    • pp.221-226
    • /
    • 2019
  • The characteristic of the beta wave among the EEG waves corresponds to the stress area of human perception. The over-bandwidth of the stress is extracted by analyzing the beta-wave correlation between the low-bandwidth and high-bandwidth. We present a KMeans clustering analysis model for unsupervised machine learning to construct an analytical model for analyzing and extracting the beta-wave correlation. The proposed model classifies the beta wave region into clusters of similar regions and identifies anomalous waveforms in the corresponding clustering category. The abnormal group of waveform clusters and the normal category leaving region are discriminated from the stress risk group. Using this model, it is possible to discriminate the degree of stress of the cognitive state through the EEG waveform, and it is possible to manage and apply the cognitive state of the individual.

Development of a Method for Analyzing and Visualizing Concept Hierarchies based on Relational Attributes and its Application on Public Open Datasets

  • Hwang, Suk-Hyung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.9
    • /
    • pp.13-25
    • /
    • 2021
  • In the age of digital innovation based on the Internet, Information and Communication and Artificial Intelligence technologies, huge amounts of datasets are being generated, collected, accumulated, and opened on the web by various public institutions providing useful and public information. In order to analyse, gain useful insights and information from data, Formal Concept Analysis(FCA) has been successfully used for analyzing, classifying, clustering and visualizing data based on the binary relation between objects and attributes in the dataset. In this paper, we present an approach for enhancing the analysis of relational attributes of data within the extended framework of FCA, which is designed to classify, conceptualize and visualize sets of objects described not only by attributes but also by relations between these objects. By using the proposed tool, RCA wizard, several experiments carried out on some public open datasets demonstrate the validity and usability of our approach on generating and visualizing conceptual hierarchies for extracting more useful knowledge from datasets. The proposed approach can be used as an useful tool for effective data analysis, classifying, clustering, visualization and exploration.