• Title/Summary/Keyword: Softening heat treatment

Search Result 112, Processing Time 0.022 seconds

Development of Low Annealing treatment omission steel by new rolling process (새로운 압연Process 구축을 통한 연화소둔 열처리생략강개발)

  • Kim B. H.;Choi K. S.;Heo C. Y.;Kim K. W.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.08a
    • /
    • pp.27-36
    • /
    • 2004
  • Contemporary objectives for steel rod rolling processing are increasingly complex and often contrasting i.e. obtaining a desired product with optimum combination of properties such as strength, toughness and formability at lower cost. Low-alloy steel rods have been produced with several heat treatments for drawing and forging processes at room temperature. In order to reduce these heat treatments much of the researches concerning of high temperature mechanical behavior of steel rods have been conducted at wire rod mill of POSCO. In this present work, optimizations of rolling temperature and cooling rate for JS-SCM435 are performed to eliminate softening heat treatment(Low Temperature Annealing) for drawing process. The results from the optimization changed the microstructure of rods after rod rolling from Bainite with high tensile strength of 1000Mpa to Pearlite and Ferrite with appropriate strength of 750Mpa that is equivalent tensile strength after softening heat treatment.

  • PDF

Hardening mechanism associated with post-firing heat treatment of softening heat treated and then firing simulated Pd-Ag-Au alloy for bonding porcelain (연화 열처리 후 모의소성된 금속-세라믹용 Pd-Ag-Au계 합금의 후열처리에 의한 경화기전)

  • Kim, Sung-Min;Yu, Young-Jun;Cho, Mi-Hyang;Kwon, Yong-Hoon;Kim, Hyung-Il;Seol, Hyo-Joung
    • Korean Journal of Dental Materials
    • /
    • v.42 no.2
    • /
    • pp.95-106
    • /
    • 2015
  • Hardening mechanism associated with post-firing heat treatment of softening heat treated and then firing simulated Pd-Ag-Au alloy for bonding porcelain was examined by observing the change in hardness, crystal structure and microstructure. By post-firing heat treatment of as-cast, solution treated and pre-firing heat treated specimens at $650^{\circ}C$ after casting, the hardness value increased within 10 minutes. Then, hardness consistently increased until 30 minutes, and gap of hardness value among the specimens was reduced. The increase in hardness after post-firing heat treatment was caused by grain interior precipitation in the matrix. The softening heat treatment did not affect the increase in hardness by post-firing heat treatment. The precipitated phase from the parent Pd-Ag-Au-rich ${\alpha}$ phase with face-centered cubic structure by post-firing heat treatment was $Pd_3$(Sn, In) phase with face-centered tetragonal structure, which has lattice parameters of $a_{200}=4.0907{\AA}$, $c_{002}=3.745{\AA}$. From above results, appropriate post-firing heat treatment in order to support the hardness of Pd-Ag-Au metal substructure was expected to bring positive effects to durability of the prosthesis.

Surface Alloying of Iron Base Rapid Solidification Materials Using Laser Beam (레이저 빔을 이용한 철계 급랭 응고 재료의 표면 합금화)

  • Nam, K.S.;Lee, K.H.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.9 no.4
    • /
    • pp.229-233
    • /
    • 1996
  • This work has been carried out to reduce the softening of heat affected zone on laser surface alloying. Iron based rapid solidification material with $Cr_{5-10}$, $V_{1-3}$, $Mo_{3-7}$, $W_{2-5}$, $B_{7-8}$, $C_{2-3}$, $Si_{0.5-1}at%$ was alloyed on the surface of SM45C steel. The excellent softening resistance in alloyed and heat affected zone showed, which could be attributed to the formation of stable high temperature precipitates.

  • PDF

The Combined Effect of Enzyme Activity and Sensory Test of Blanching and Brining in Hot Solution and Trehalose Treatment on the Cucumber Kimchi for the Storage Period (데침과 열수의 침적과 Trehalose 처리가 오이 김치의 저장중 효소 활성의 변화와 관능 검사에 미치는 병용효과)

  • 이혜정;오봉희;남정혜
    • The Korean Journal of Food And Nutrition
    • /
    • v.14 no.5
    • /
    • pp.385-390
    • /
    • 2001
  • The enzyme activity and organoleptic properties of Korean pickled cucumber were studies for their changes during fermentation. The Korean pickled cucumber were prepared by blanching and high temperature soaking in salt solution and trehalose treament. The results showed that the effect of combined heat and trehalose treatment significantly reduced the fermentation rate and softening rate of texture while a rather rapid fermentation was for those preserved with salt. The effect of terhalose treatment enhanced fermentation and it was significantly reduced softening rate of texture by 2% treatment. The sensory evaluation of Korean pickled cucumber was found that combined heat treatment with blanching and hot solution had a positive effect for reduction of softening of cucumber tissue, however, odor and taste were not significantly affected. This study suggested that combined heat and trehalose treament might have potential for affording protection against softness of cucumber tissue during the fermentation time.

  • PDF

Mechanical Properties Variation of Ti-6Al-4V Alloy by Microstructural Control (α+β 타이타늄 합금의 미세조직 제어에 따른 기계적 특성)

  • Hwang, Yu-Jin;Park, Yang-Kyun;Kim, Chang-Lim;Kim, Jin-Yung;Lee, Dong-Geun
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.29 no.5
    • /
    • pp.220-226
    • /
    • 2016
  • The mechanical properties of Ti-6Al-4V can be improved by microstructural control through the heat treatment in ${\alpha}+{\beta}$ region. The heat treatment was carried out with a variety of heat treatment temperatures and holding times to find the optimized heat treatment conditions and it was analyzed by linking the microstructural characteristics and mechanical properties. The part of ${\beta}$ phase with $10{\pm}2wt%$ vanadium was transformed into ${\alpha}^{{\prime}{\prime}}$ martensite phase after quenched, so the hardness and tensile properties were decreased below $900^{\circ}C$. The higher the heat treatment temperature is, the smaller is the vanadium-rich region, which leads to transformation into hcp ${\alpha}^{\prime}$ martensite above $900^{\circ}C$. The hardness and tensile properties were improved due to the hard ${\alpha}^{\prime}$ martensite. As the holding times were longer, the hardness and tensile properties decreased below $900^{\circ}C$ because of the softening effect by the grain growth. When varying the holding times above $900^{\circ}C$, the change of mechanical properties was slight because the softening effect of grain growth and the strengthening effect of ${\alpha}^{\prime}$ phase were counteractive. Therefore, the best conditions of heat treatment, which is in the range of $920{\sim}960^{\circ}C$, 40 min, WQ, can effectively improve the mechanical properties of Ti-6Al-4V.

Preparation of pitch from pyrolized fuel oil by electron beam radiation and its melt-electrospinning property

  • Jung, Jin-Young;Lee, Young-Seak
    • Carbon letters
    • /
    • v.15 no.2
    • /
    • pp.129-135
    • /
    • 2014
  • Spinnable pitch for melt-electrospinning was obtained from pyrolized fuel oil by electron beam (E-beam) radiation treatment. The modified pitch was characterized by measuring its elemental composition, softening point, viscosity, molecular weight, and spinnability. The softening point and viscosity properties of the modified pitch were influenced by reforming types (heat or E-beam radiation treatment) and the use of a catalyst. The softening point and molecular weight were increased in proportion to absorbed doses of E-beam radiation and added $AlCl_3$ due to the formation of pitch by free radical polymerization. The range of the molecular weight distribution of the modified pitch becomes narrow with better spinning owing to the generated aromatic compounds with similar molecular weight. The diameter of melt-electrospun pitch fibers under applied power of 20 kV decreased 53% ($4.7{\pm}0.9{\mu}m$) compared to that of melt-spun pitch fibers ($10.2{\pm}2.8{\mu}m$). It is found that E-beam treatment for reforming could be a promising method in terms of time-savings and cost-effectiveness, and the melt-electrospinning method is suitable for the preparation of thinner fibers than those obtained with the conventional melt-spinning method.

Effect of Heat Treatment and Salts Addition on Dongchimi Fermentation (열처리와 염의 첨가가 동치미 발효에 미치는 영향)

  • 강근옥;김종군;김우정
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.20 no.6
    • /
    • pp.565-571
    • /
    • 1991
  • A short time microwave heat treatment, bringing in hot NaCl solution, addition of KCI, CaCl2, MgCl2 into brining solution and salts mixture of phosphates into half fermented dongchim were investigated for their effects on some quality of dongchimi, a Korean pickle of Chinese radish roots, during fermentation. The reference dongchimi was prepared by brining the radish roots in 7% NaCl added with seasonings at $25^{\circ}C$. The result showed that microwave heat treatment affected little on the pH or total acidity change during fermentation. Soaking the roots in 80-9$0^{\circ}C$ hot salt solution significantly reduced the fermentation and softening rate of dongchimi while a rather rapid fementation was found for those soaked in 7$0^{\circ}C$. Addition of KCI and CaCl2 into brining solution slowed the pH decrease and softening of the roots, respectively. The dangchimi added with the salts mixture of phosphate, citrate and nitrite was significantly extreneded the fermentation time to pH 4.0 by more than two folds.

  • PDF

Effect of heat treatment of core fabricated by Ni-Cr alloy on marginal and internal fit (열처리가 Ni-Cr 합금으로 제작된 하부구조물의 변연 및 내면 간격에 미치는 영향)

  • Kim, Jae-Hong;Kim, Ki-Baek;Jung, Jae-Kwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.9
    • /
    • pp.244-250
    • /
    • 2017
  • The most important aspect determining the completeness of aprosthesis is itsmarginal and internal fit. Alloysare processed using a softening/hardening heat treatment methodin order to improve their mechanical, physical properties and polishing properties. To examinehow the heat treatment method affects the marginal and internal fit of the Ni-Cr alloy core,thirty dental stone models of the abutment of the mandibular left molar were manufactured.The Ni-Cr alloy coreswere manufactured by the dipping method for the experiment and dividedinto three groups; A for no heat treatment, B for softening heat treatment and C for hardening heat treatment. The marginal and internal fitsof all of the groups were measured by the silicone replica technique. A statistical analysis was performed using one-way ANOVA(${\alpha}=0.05$) in order to examine whether there is a significant difference in the average values of the marginal and internal fits among the three groups and it was found that themarginal fits (1, 6) were significantly different (p<0.05), but the internal fits (2, 3, 4, 5) were not significantly different (p>0.05). These results show that Ni-Cr alloys should not be processed bythe heat treatmentmethod.However, they need to be confirmed in further clinical application studies.

Preparation of Pitch for Melt-electrospinning from Naphtha Cracking Bottom Oil (납사 크래킹 잔사유로부터 용융전기방사용 핏치 제조)

  • Kim, Jinhoon;Lee, Sung Ho;Lee, Young-Seak
    • Applied Chemistry for Engineering
    • /
    • v.24 no.4
    • /
    • pp.402-406
    • /
    • 2013
  • In this study, a pitch for melt-electrospinning was prepared from naphtha cracking bottom (NCB) oil by the modification with heat treatment. The softening point and property of the modified pitch was influenced by modification conditions such as nitrogen flow rate, heat treatment temperature, and reaction time. Among these, the heat treatment temperature had a very strong influence on the distribution of molecular weight and softening point of the pitch. The C/H mole ratio and average molecular weight increased with increasing the heat treatment temperature due the decomposition and cyclization reaction of surface-functional groups. In addition, the values of benzene insoluble and quinoline insoluble also tends to decrease, and the width of molecular weight distribution seems to get more narrow. The carbon fiber with a diameter of $4.8{\mu}m$ was prepared from a modified pitch at the softening point of $155^{\circ}C$ by melt-electrospinning. It is believed that the melt-electro spinning method is much more convenient to get the thinner fiber than the conventional melt spinning method.

Preparation of Coal Tar Pitch as Carbon Fibers Precursor from Coal Tar (콜타르로부터 탄소섬유 제조를 위한 프리커서용 석탄계 핏치의 제조)

  • Ko, Hyo Joon;Park, Chang Uk;Cho, Hyo Hang;Yoo, Mi Jung;Kim, Myung-Soo;Lim, Yun-Soo
    • Korean Journal of Materials Research
    • /
    • v.23 no.5
    • /
    • pp.276-280
    • /
    • 2013
  • Coal tar is the primary feedstock of premium graphitizable carbon precursor. Coal tars are residues formed as byproducts of thermal treatments of coal. Coal tar pitches were prepared through two different heat treatment schedules and their properties were characterized. One was prepared with argon and oxidation treatment with oxygen; the other was prepared with oxygen treatment at low temperature and then argon treatment at high temperature; both used coal tar to prepare coal tar pitches. To modulate the properties, different heat treatment temperatures ($300{\sim}400^{\circ}C$) were used for the coal tar pitches. The prepared coal tar pitches were investigated to determine several properties, such as softening point, C/H ratio, coke yield, and aromaticity index. The coal tar pitches were subject to considerable changes in chemical composition that arose due to polymerization after heat treatment. Coal tar pitch showed considerable increases in softening point, C/H ratio, coke yields, and aromaticity index compared to those characteristics for coal tar. The contents of gamma resin, which consists of low molecular weight compounds in the pitches and is insoluble in toluene, showed that the degree of polymerization in the pitches was proportional to C/H ratio. Using an oxidizing atmosphere like air to prepare the pitches from coal tar was an effective way to increase the aromaticity index at relatively low temperature.