Browse > Article
http://dx.doi.org/10.5714/CL.2014.15.2.129

Preparation of pitch from pyrolized fuel oil by electron beam radiation and its melt-electrospinning property  

Jung, Jin-Young (Department of Fine Chemical Engineering and Applied Chemistry, Chungnam National University)
Lee, Young-Seak (Department of Fine Chemical Engineering and Applied Chemistry, Chungnam National University)
Publication Information
Carbon letters / v.15, no.2, 2014 , pp. 129-135 More about this Journal
Abstract
Spinnable pitch for melt-electrospinning was obtained from pyrolized fuel oil by electron beam (E-beam) radiation treatment. The modified pitch was characterized by measuring its elemental composition, softening point, viscosity, molecular weight, and spinnability. The softening point and viscosity properties of the modified pitch were influenced by reforming types (heat or E-beam radiation treatment) and the use of a catalyst. The softening point and molecular weight were increased in proportion to absorbed doses of E-beam radiation and added $AlCl_3$ due to the formation of pitch by free radical polymerization. The range of the molecular weight distribution of the modified pitch becomes narrow with better spinning owing to the generated aromatic compounds with similar molecular weight. The diameter of melt-electrospun pitch fibers under applied power of 20 kV decreased 53% ($4.7{\pm}0.9{\mu}m$) compared to that of melt-spun pitch fibers ($10.2{\pm}2.8{\mu}m$). It is found that E-beam treatment for reforming could be a promising method in terms of time-savings and cost-effectiveness, and the melt-electrospinning method is suitable for the preparation of thinner fibers than those obtained with the conventional melt-spinning method.
Keywords
pitch; carbon fibers; melt-electrospinning; heat treatment; pyrolized fuel oil; electron beam radiation;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Diez N, Alvarez P, Santamaria R, Blanco C, Menendez R, Granda M. Optimisation of the melt-spinning of anthracene oil-based pitch for isotropic carbon fibre preparation. Fuel Process Technol, 93, 99 (2012). http://dx.doi.org/10.1016/j.fuproc.2011.09.016.   DOI   ScienceOn
2 Watanabe F, Ishida S, Korai Y, Mochida I, Kato I, Sakai Y, Kamatsu M. Pitch-based carbon fiber of high compressive strength prepared from synthetic isotropic pitch containing mesophase spheres. Carbon, 37, 961 (1999). http://dx.doi.org/10.1016/S0008-6223(98)00251-6.   DOI   ScienceOn
3 Adams PM, Katzman HA, Rellick GS, Stupian GW. Characterization of high thermal conductivity carbon fibers and a selfreinforced graphite panel. Carbon, 36, 233 (1998). http://dx.doi.org/10.1016/S0008-6223(97)00189-9.   DOI   ScienceOn
4 Maeda T, Ming Zeng S, Tokumitsu K, mondori J, Mochida I. Preparation of isotropic pitch precursors for general purpose carbon fibers (GPCF) by air blowing. I. Preparation of spinnable isotropic pitch precursor from coal tar by air blowing. Carbon, 31, 407 (1993). http://dx.doi.org/10.1016/0008-6223(93)90127-V.   DOI   ScienceOn
5 Mochida I, Oyama T, Korai Y. Improvements to needle-coke quality by pressure reductions from a tube reactor. Carbon, 26, 57 (1988). http://dx.doi.org/10.1016/0008-6223(88)90009-7.   DOI   ScienceOn
6 Oh SM, Yoon SH, Lee GD, Park YD. Effects of pressurized pretreatment on the preparation of mesophase pitch. Carbon, 29, 1009 (1991). http://dx.doi.org/10.1016/0008-6223(91)90180-Q.   DOI   ScienceOn
7 Park YD, Mochida I. A two-stage preparation of mesophase pitch from the vacuum residue of FCC decant oil. Carbon, 27, 925 (1989). http://dx.doi.org/10.1016/0008-6223(89)90043-2.   DOI   ScienceOn
8 Lewis IC. Thermal polymerization of aromatic hydrocarbons. Carbon, 18, 191 (1980). http://dx.doi.org/10.1016/0008-6223(80)90060-3.   DOI   ScienceOn
9 Menendez R, Granda M, Fernandez JJ, Figueiras A, Bermejo J, Bonhomme J, Belzunce J. Influence of pitch air-blowing and thermal treatment on the microstructure and mechanical properties of carbon/carbon composites. J Microsc, 185, 145 (1997). http://dx.doi.org/10.1046/j.1365-2818.1997.d01-608.x.   DOI   ScienceOn
10 Naito K, Tanaka Y, Yang JM, Kagawa Y. Tensile properties of ultrahigh strength PAN-based, ultrahigh modulus pitch-based and high ductility pitch-based carbon fibers. Carbon, 46, 189 (2008). http://dx.doi.org/10.1016/j.carbon.2007.11.001.   DOI   ScienceOn
11 Yusof N, Ismail AF. Post spinning and pyrolysis processes of polyacrylonitrile (PAN)-based carbon fiber and activated carbon fiber: a review. J Anal Appl Pyrolysis, 93, 1 (2012). http://dx.doi.org/10.1016/j.jaap.2011.10.001.   DOI   ScienceOn
12 Kim JG, Im JS, Bae TS, Kim JH, Lee YS. The electrochemical behavior of an enzyme biosensor electrode using an oxyfluorinated pitch-based carbon. J Ind Eng Chem, 19, 94 (2013). http://dx.doi.org/10.1016/j.jiec.2012.07.008.   DOI   ScienceOn
13 Kim BJ, Lee YS, Park SJ. Novel porous carbons synthesized from polymeric precursors for hydrogen storage. Int J Hydrogen Energy, 33, 2254 (2008). http://dx.doi.org/10.1016/j.ijhydene.2008.02.019.   DOI   ScienceOn
14 Yang Q, Liu J, Li S, Wang F, Wu T. Fabrication and mechanical properties of Cu-coatedwoven carbon fibers reinforced aluminum alloy composite. Mater Des, 57, 442 (2014). http://dx.doi.org/10.1016/j.matdes.2013.12.064.   DOI   ScienceOn
15 Heo GY, Yoo YJ, Park SJ. Effect of carbonization temperature on electrical conductivity of carbon papers prepared from petroleum pitch-coated glass fibers. J Ind Eng Chem, 19, 1040 (2013). http://dx.doi.org/10.1016/j.jiec.2012.11.028.   DOI   ScienceOn
16 Mora E, Blanco C, Prada V, Santamaria R, Granda M, Menendez R. A study of pitch-based precursors for general purpose carbon fibres. Carbon, 40, 2719 (2002). http://dx.doi.org/10.1016/S0008-6223(02)00185-9.   DOI   ScienceOn
17 Greene ML, Schwartz RW, Treleaven JW. Short residence time graphitization of mesophase pitch-based carbon fibers. Carbon, 40, 1217 (2002). http://dx.doi.org/10.1016/S0008-6223(01)00301-3.   DOI   ScienceOn
18 Vautard F, Ozcan S, Poland L, Nardin M, Meyer H. Influence of thermal history on the mechanical properties of carbon fiber-acrylate composites cured by electron beam and thermal processes. Composites A, 45, 162 (2013). http://dx.doi.org/10.1016/j.compositesa.2012.08.025.   DOI   ScienceOn
19 Mochida I, Shimizu K, Korai Y, Otsuka H, Fujiyama S. Structure and carbonization properties of pitches produced catalytically from aromatic hydrocarbons with HF/$BF_3$. Carbon, 26, 843 (1988). http://dx.doi.org/10.1016/0008-6223(88)90108-X.   DOI   ScienceOn
20 Mochida I, Yoon SH, Korai Y, Kanno K, Sakai Y, Komatsu M. Carbon-fibers from aromatic-hydrocarbons. Chem Tech, 25, 29 (1995).
21 Lee YS, Basova YV, Edie DD, Reid LK, Newcombe SR, Ryu SK. Preparation and characterization of trilobal activated carbon fibers. Carbon, 41, 2573 (2003). http://dx.doi.org/10.1016/S0008-6223(03)00376-2.   DOI   ScienceOn
22 Schlemmer B, Bandari R, Rosenkranz L, Buchmeiser MR. Electron beam triggered, free radical polymerization-derived monolithic capillary columns for high-performance liquid chromatography. J Chromatogr A, 1216, 2664 (2009). http://dx.doi.org/10.1016/j.chroma.2008.09.003.   DOI   ScienceOn
23 Kunowsky M, Marco-Lozar JP, Cazorla-Amoros D, Linares-Solano A. Scale-up activation of carbon fibres for hydrogen storage. Int J Hydrogen Energy, 35, 2393 (2010). http://dx.doi.org/10.1016/j.ijhydene.2009.12.151.   DOI   ScienceOn
24 Dalton PD, Grafahrend D, Klinkhammer K, Klee D, Moller M. Electrospinning of polymer melts: phenomenological observations. Polymer, 48, 6823 (2007). http://dx.doi.org/10.1016/j.polymer.2007.09.037.   DOI   ScienceOn
25 Kim JH, Lee SH, Lee YS. Preparation of pitch for melt-electrospinning from naphtha cracking bottom oil. Appl Chem Eng, 24, 402 (2013).
26 Botman JIM, Derksen ATAM, van Herk AM, Jung M, Kuchta FD, Manders LG, Timmermans CJ, de Voigt MJA. A linear accelerator as a tool for investigations into free radical polymerization kinetics and mechanisms by means of pulsed electron beam polymerization. Nucl Instrum Methods Phys Res B, 139, 490 (1998). http://dx.doi.org/10.1016/S0168-583X(97)00948-8.   DOI   ScienceOn
27 Hwang JS, Lee CH, Cho KH, Kim MS, Kim CJ, Ryu SK, Rhee BS. Preparation of anisotropic/isotropic pitches from NCC-PFO. J Korean Inst Chem Eng, 33, 551 (1995).   과학기술학회마을
28 In SJ, Ryu SK, Rhee BS. Effect of stirring speed and $N_2$-blowing rate on mesophase formation from naptha tar pitch. J Korean Inst Chem Eng, 27, 291 (1989).
29 Mochida I, Kudo K, Fukuda N, Takeshita K, Takahashi R. Carbonization of pitches-IV: Carbonization of polycyclic aromatic hydrocarbons under the presence of aluminum chloride catalyst. Carbon, 13, 135 (1975). http://dx.doi.org/10.1016/0008-6223(75)90270-5.   DOI   ScienceOn
30 Fernandez AL, Granda M, Bermejo J, Menendez R. Catalytic polymerization of anthracene oil with aluminium trichloride. Carbon, 37, 1247 (1999). http://dx.doi.org/10.1016/S0008-6223(98)00321-2.   DOI   ScienceOn
31 Berrueco C, Alvarez P, Diez N, Granda M, Menendez R, Blanco C, Santamaria R, Millan M. Characterisation and feasibility as carbon fibre precursors of isotropic pitches derived from anthracene oil. Fuel, 101, 9 (2012). http://dx.doi.org/10.1016/j.fuel.2011.10.005.   DOI   ScienceOn
32 Kim CN, Xing ZC, Baek JY, Bae HS, Kang IK. Preparation of antibacterial nanofibrous PMMA nonwoven fabrics. Polymer (Korea), 33, 429 (2009).   과학기술학회마을