• 제목/요약/키워드: Soft-starting

검색결과 74건 처리시간 0.021초

Novel Soft Starting Algorithm of Single Phase Induction Motors by Using PWM Inverter

  • Kim, Hae-Jin;Hwang, Seon-Hwan;Kim, Jang-Mok
    • Journal of Power Electronics
    • /
    • 제18권6호
    • /
    • pp.1720-1728
    • /
    • 2018
  • This paper proposes a novel soft starting algorithm by using PWM inverter technique to control an amplitude of the motor starting current at a single-phase induction motor (SPIM). Traditional SPIM starting methods such as a Split-Phase, Capacitor-Start, Permanent-Split Capacitor (PSC), Capacitor-Start Capacitor-Run (CSCR), basically cannot control the magnitude of starting current due to the fixed system structures. Therefore, in this paper, a soft starting algorithm based on a proportional resonant (PR) control with a variable and constant frequency is proposed to reduce the inrush current and starting up time. In addition, a transition algorithm for operation modes is devised to generate a constant voltage and constant frequency (CVCF). The validity and effectiveness of the proposed soft starting method and transition algorithm are verified through experimental results.

점호각을 고려한 유도전동기의 소프트 기동 특성 해석 (Analysis of Soft Start-up Characteristics of the Induction Motor Considering the Firing Angle)

  • 김종겸;박영진
    • 전기학회논문지
    • /
    • 제65권6호
    • /
    • pp.1007-1012
    • /
    • 2016
  • Induction motors are used widely in driving load of a fluid, such as a pump or a fan in the industry. Induction motor has been generated the voltage drop by the occurrence of a high current during startup. In addition, high start-up current can act as a mechanical stress on the shaft of the motor. So there is need a way to reduce the starting current. Soft start method is one of the many ways to reduce the starting current. This method uses silicon-controlled rectifiers(SCRs) for varying value of the voltage applied to the motor. There is a case for fixing or changing the thyristor firing angle to adjust the magnitude of the voltage. Starting power factor of induction motor is very low compared to the normal operation. Soft starting with the firing angle fixed needs to be considered a low power factor at startup. In this study, we compared the direct start characteristics and soft start characteristics considering the low power factor at the time of start-up. It was possible to confirm that the starting current and the voltage drop is present differently according to the firing angle.

Comparison of Starting Current Characteristics for Three-Phase Induction Motor Due to Phase-control Soft Starter and Asynchronous PWM AC Chopper

  • Thanyaphirak, Veera;Kinnares, Vijit;Kunakorn, Anantawat
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권3호
    • /
    • pp.1090-1100
    • /
    • 2017
  • This paper presents the comparison of starting current characteristics of a three-phase induction motor fed by two types of soft starters. The first soft starter under investigation is a conventional AC voltage controller on the basis of a phase-control technique. The other is the proposed asynchronous PWM AC chopper which is developed from the conventional synchronous PWM AC chopper. In this paper, the proposed asynchronous PWM AC chopper control scheme is developed by generating only two asynchronous PWM signals for a three-phase main power circuit (6 switching devices) from a single voltage control signal which is compared with a single sawtooth carrier signal. By this approach, the PWM signals are independent and easy to implement since the PWM signals do not need to be synchronized with a three-phase voltage source. Details of both soft starters are discussed. The experimental and simulation results of the starting currents are shown. It is found that the asynchronous PWM AC chopper efficiently works as a suitable soft starter for the three-phase induction motor due to that the starting currents are reduced and are sinusoidal with less harmonic contents, when being compared with the starting current waveforms using the conventional phase-control starting technique. Also the proposed soft starter offers low starting electromagnetic torque pulsation.

고압 유도전동기의 구동을 위한 소프트-스타터의 대용량 파워스텍 구현 (Implementation of Soft-starter with Large Scale Power Stack for High Voltage Induction Motor Driving)

  • 유두영;전희종;손진근
    • 전기학회논문지P
    • /
    • 제65권2호
    • /
    • pp.88-93
    • /
    • 2016
  • Soft starters are used with large induction motors in blowers, fans, pumps and the crane hoist drives. AC voltage controllers are used as soft starters in induction motors for starting and to adjust its speed. Soft-starter starting system uses phase control method of input electric source through the setting of the thyristor(SCR) firing angle ${\alpha}$, and it can control input electric source stably and continuously from beginning of starting to ending of starting. In this paper, it is verified that power stack of high-voltage with SCR series system possesses dielectric strength and input electric source is controlled stably by phase control. Especially, from the driving experimental of proposed soft-starter operating, a smoothing acceleration and inrush current decrease can be achieved by the series SCR trigger.

트라이액을 이용한 단상 유도전동기의 Soft Starting Switch에 관한 연구 (A Study on the Soft Starting Switch of Single Phase Condenser Induction Motor Using TRIAC)

  • 강응석;신대철;최종문
    • 조명전기설비학회논문지
    • /
    • 제18권4호
    • /
    • pp.97-103
    • /
    • 2004
  • 단상 유도전동기의 기동전류는 정격전류의 3-6배로 전등의 명멸, TV 화면의 산란, 전동기의 절연 열화, 옥내배선의 순간적인 열화 등을 발생시켜 전력손실, 가전제품의 효율저하 및 수명을 단축시키고 있다. 이러한 문제점을 개선하기 위해 본 논문에서는 트라이액과 교류변류기를 사용하여 기동전류를 3.7(%) 감소시키는 방법을 제안하였으며, 또한 반도체 소자를 사용함으로써 수명은 반영구적임을 확인하였다.

이동식발전설비의 기동전동기용 전자식 시동 제어장치 개발 (Development of an Electronic Starting Controller for Starting Motor of Packaged Power Systems)

  • 김종수;윤경국;서동환
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제36권5호
    • /
    • pp.700-706
    • /
    • 2012
  • 이동식발전설비에서 시동장치의 핵심기술은 피니언기어 쉬프팅 장치와 초기 기동전압을 제한하는 것이며 기존의 제품에서는 기계적 주접점을 이용한 시동 제어장치를 사용하고 있다. 하지만 완전한 피니언기어 쉬프팅 후 시동전동기의 기동의 불확실성이나 대전류에 의한 주접점의 아크손상 등의 큰 문제점을 가지고 있다. 본 연구에서는 이러한 문제점을 해결하기 위해 기동의 불확실성 제거를 위한 피니언기어 쉬프팅 제어회로, 대전류에 의한 접점의 아크손상 방지를 위해 반도체 소자를 이용한 시동 제어시스템, 직권전동기의 소프트 스타팅을 위한 기동 안전장치 등을 새롭게 설계, 제작하여 안전성과 신뢰성을 얻고자 하였다. 또한, 피니언기어 제어회로와 전동기 전원회로를 분리하여 전기적 안전성을 확보하였다.

비상 발전기를 이용한 유도전동기의 소프트 기동 시스템 (Soft Start System of Induction Motor using Emergency Generator)

  • 황보찬;고재하;이정환;박성미;박성준
    • 한국산업융합학회 논문집
    • /
    • 제25권3호
    • /
    • pp.433-441
    • /
    • 2022
  • In general, in an emergency generator system for an electric facility including an induction motor load, an emergency power generation facility larger than the facility load capacity is built due to the initial starting current of the induction motor. In order to reduce this economic burden, various methods to reduce the inrush current of induction motors are applied to suppress the additional expansion of generators due to the reduction of power generation facilities and the increase in electrical facilities. Among these methods, when a system with a built-in soft start function of an induction motor using an inverter is built, it is the best way to reduce the inrush current of the induction motor to less than the rated current. However, in this case, the installation cost of the inverter to drive the induction motor increases. This paper proposes a soft start method of an induction motor by expanding the frequency and voltage control operation area of an emergency generator. In addition, proposed a speed calculation method based on power factor information, which is essential information for stable soft start of an induction motor, and a method for generating a speed command value of the governor for starting with maximum torque.

마이크로프로세서를 사용한 고효율 인버터 안정기에 관한 연구 (A Study on Hight Efficiency Inverter Ballast using Microprocessor)

  • 정재륜
    • 한국조명전기설비학회지:조명전기설비
    • /
    • 제13권2호
    • /
    • pp.220-220
    • /
    • 1999
  • This paper describes the high efficiency inverter ballast circuit using very cheap microprocessor, which has been developed by the author. A variety of soft-switching techniques have been proposed to reduce the switching losses and EMI problems that occur with higher switching frequencies in switched inverter ballast. The inverter ballast circuit, which employs a temperature sensing circuits has been also proposed to improve starting performance of the fluorescent lamps. That is, the inverter ballast circuit, which employs a soft-starting circuit and soft-switching techniques to implement the power factor correction and to mitigate of power-loss and increase a life time of the fluorescent lamps, has become an attractive performance for ballasting the fluorescent lamps. In this paper, the operation and the control of the inverter ballast are described in detail and experimental results are presented. As the experimental results, when environment temperature is at -40℃, the inverter ballast circuit has low THD(4.8%) of the input current and large power factor(98%) of the lamp current. The proposed improved ballast circuit appears to be a good performance for ballasting fluorescent lamps.

기동시뮬레이션 방법에 의한 유도전동기 기동방식 선정 (Selection of Motor Starting Method by Numeric Simulation)

  • 장중구;서상진;이민용
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 하계학술대회 논문집 B
    • /
    • pp.817-820
    • /
    • 2002
  • Since a squirrel cage induction motor by NEMA Design types is designed to withstand full-voltage starting, direct starting method can be the most economical one. Starting a squirrel cage motor from standstill by connecting it directly across the line may allow inush currents of approximately 500-600% of rated current at lagging power factor of 35-50%. For many of the large motors, the starting inrush current may be great enough to cause voltage dips, which may adversely affect the building's lighting system. Electric utilities also have restrictions on starting currents, so that voltage fluctuations can be held to prescribed limits. Therefore the need for choosing the most appropriate method of motor starting is quite essential. In this paper, we proposed a plan for the selection of the most appropriate motor starting method, first by way of numeric simulation using manufacturer's data and second by way of actual experience. So far, more often than not, the selection of motor starting method has been accomplished only as regards to the capacity of the motor and the frequency of starting and stopping. But nowadays such high-tech apparatus as soft starters are being developed, and we are on the position to give more attention to clarify the way of selection of the motor starting method.

  • PDF