• Title/Summary/Keyword: Soft-Lithography

Search Result 97, Processing Time 0.878 seconds

Fabrication of Patchable Organic Lasing Sheets via Soft Lithography

  • Kim, Ju-Hyung
    • Clean Technology
    • /
    • v.22 no.3
    • /
    • pp.203-207
    • /
    • 2016
  • Here, we report a novel fabrication technique for patchable organic lasing sheet based on non-volatile liquid organic semiconductors and freestanding polymeric film with high flexibility and patchability. For this work, we have fabricated the second-order DFB grating structure, which leads to surface emission, embedded in the freestanding polymeric film. Using an ultra-violet (UV) curable polyurethaneacrylate (PUA) mixture, the periodic DFB grating structure can be easily prepared on the freestanding polymeric film via a simple UV curing process. Due to unsaturated acrylate remained in the PUA mixture after UV curing, the freestanding PUA film provides adhesive properties, which enable mounting of the patchable organic lasing sheet onto non-flat surfaces with conformal contact. To achieve laser actions in the freestanding resonator structure, a composite material of liquid 9-(2-ethylhexyl)carbazole (EHCz) and organic laser dyes was used as the laser medium. Since the degraded active materials can be easily refreshed by a simple injection of the liquid composite, such a non-volatile liquid organic semiconducting medium has degradation-free and recyclable characteristics in addition to other strong advantages including tunable optoelectronic responses, solvent-free processing, and ultimate mechanical flexibility and uniformity. Lasing properties of the patchable organic lasing sheet were also investigated after mounting onto non-flat surfaces, showing a mechanical tunability of laser emission under variable surface curvature. It is anticipated that these results will be applied to the development of various patchable optoelectronic applications for light-emitting displays, sensors and data communications.

A Study on the Electrical and Optical Properties of Micro-Pattern of Polypyrrole(PPy) by Using Vapor Phase Polymerization (기상중합법을 이용한 Polypyrrole(PPy) 필름의 전기적/광학적 특성 및 미세패턴 형성에 관한 연구)

  • Han, Yong-Hyeon;Yim, Jin-Heong
    • Polymer(Korea)
    • /
    • v.34 no.5
    • /
    • pp.450-453
    • /
    • 2010
  • The electrical/optical properties and surface structures of polypyrrole (PPy) thin films, which were prepared by liquid phase polymerization (LPP) and vapor phase polymerization (VPP) of pyrrole using FTS as an initiatior are compared. The PPy thin film prepared by VPP showed superior surface resistance characteristics as compared with that prepared by LPP. We investigated the relation between surface morphology of PPy film and surface resistance by surface characteristic analysis. The surface of PPy thin film prepared by VPP was smoother than that prepared by LPP. Micro-patterned PPy thin film could be prepared effectively using VPP-combined ink-jet printing and soft lithography.

Fabrication of PDMS Lens Using Photolithography and Water Droplet Mold (사진식각공정과 물방울 형틀을 이용한 PDMS 렌즈 제작)

  • Kim, Jin Young;Sung, Jungwoo;Cho, Seong J.;Kim, Chulhong;Lim, Geunbae
    • Journal of Sensor Science and Technology
    • /
    • v.22 no.5
    • /
    • pp.352-356
    • /
    • 2013
  • We developed a novel fabrication method of polydimethylsioxane (PDMS) lens, which can easily control the shapes of the lens using soft lithography with common photolithography and water droplet molding. A mold for PDMS lens was prepared by patterning of hydrophobic photoresist on the hydrophilic substrate and dispensing small water droplets onto the predefined hydrophilic patterns. The size of patterns determined the dimension of the lens and the dispensed volume of the water droplet decided the radius of curvature of the PDMS lens independently. The water droplet with photoresist pattern played a robustly fixed mold for lens due to difference in wettability. The radius of curvature could be calculated theoretically because the water droplets could approximate spherical cap on the substrate. Finally, concave and convex PDMS lenses which could reduce or magnify optically were fabricated by curing of PDMS on the prepared mold. The measured radii of the fabricated PDMS lenses were well matched with the estimated values. We believe that our simple and efficient fabrication method can be adopted to PDMS microlens and extended to micro optical device, lab on a chip, and sensor technology.

Characteristics of Hardness and Elastic Modulus of PMMA Film using Nano-Tribology (Nanotribology를 이용한 PMMA 박막의 Hardness와 Elastic Modulus 특성 연구)

  • Kim, Soo-In;Kim, Hyun-Woo;Noh, Seong-Cheol;Yoon, Duk-Jin;Chang, Hong-Jun;Lee, Jong-Rim;Lee, Chang-Woo
    • Journal of the Korean Vacuum Society
    • /
    • v.18 no.5
    • /
    • pp.372-376
    • /
    • 2009
  • In the modern semiconductor industry, lithography process is used to construct specific patterns. However, due to the decreasing of line width, these days, more and more researchers are interested in PMMA(Poly Methyl Methacrylate) lithography by using e-beam instead of the prior method, PR(Photoresist) lithography by using UV(Ultra-Violet). Additionally, the patterns constructed by lithography are collapsed during the process of cleansing remnants and the resistance against the breakdown of the patterns is known to be proportional to the elastic modulus of pattern-constructing materials. In this research, we measured the change of hardness and elastic modulus of PMMA film surface according to the change of time spent to soft-bake the PMMA film. During the measurement, we controlled the tip pressure from $25{\mu}N$ to $8,500{\mu}N$ having intervals that are $134.52{\mu}N$. For these measurements, we used the Triboindenter from Hysitron to gauge the hardness and elastic modulus and the tip we used was Berkovich diamond Tip.

A Study on Polymer Replica Materials for Nanotransfer Printing (패턴전사프린팅용 고분자 복제 소재 연구)

  • Kang, Young Lim;Park, Woon Ik
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.34 no.4
    • /
    • pp.262-268
    • /
    • 2021
  • For the past several decades, various next-generation patterning methods have been developed to obtain well-designed nano-to-micro structures, such as imprint lithography, nanotransfer printing (nTP), directed self-assembly (DSA), E-beam lithography, and so on. Especially, nTP process has much attention due to its low processing cost, short processing time, and good compatibility with other patterning techniques in achieving the formation of high-resolution functional patterns. To transfer functional patterns onto desirable substrates, the use of soft materials is required for precise replication of master mold. Here, we introduce a simple and practical nTP method to create highly ordered structures using various polymeric replica materials. We found that polymethyl methacrylate (PMMA), polystyrene (PS), and polyvinylpyridine (PVP) are possible candidates for replica materials for reliable duplication of Si master mold based on systematic analysis of pattern visualization. Furthermore, we successfully obtained well-defined metal and oxide nanostructures with functionality on target substrates by using replica patterns, through deposition and transfer process. We expect that the several candidates of replica materials can be exploited for effective nanofabrication of complex electronic devices.

Soft Lithographic Approach to Fabricate Sub-50 nm Nanowire Field-effect Transistors

  • Lee, Jeong-Eun;Lee, Hyeon-Ju;Go, U-Ri;Lee, Seong-Gyu;Qi, Ai;Lee, Min-Hyeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.410.1-410.1
    • /
    • 2014
  • A soft-lithographic top-down approach is combined with an epitaxial layer transfer process to fabricate high quality III-V compound semiconductor nanowires (NWs) and integrate them on Si/SiO2 substrates, using MBE-grown ultrathin InAs as a source wafer. The channel width of the InAs nanowires is controlled by using solvent-assisted nanoscale embossing (SANE), descumming, and etching processes. By optimizing these processes, the NW width is scaled to less than 50 nm, and the InAs NWFETs has ${\sim}1,600cm^2/Vs$ peak electron mobility, which indicates no mobility degradation due to the size.

  • PDF

Solvent-Assisted Soft-Lithographic Patterning of Lyotropic Liquid Crystalline Polymer Film by Flow Control through Patterned Channels

  • Park, Chang-Sub;Park, Kyung-Woo;Kang, Shin-Won;Kwak, Gi-Seop;Kim, Hak-Rin
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.641-644
    • /
    • 2009
  • We demonstrated a solvent-assisted soft-lithographic patterning method for producing patterned structure and patterned ordering with lyotropic liquid crystalline polymer (LCP) film. Experimental results showed that the liquid crystalline ordering of lyotropic film could be controlled by shearing effects of the fluidic solvent though the patterned mold channels. In this work, two types of lyotropic LCPs were used to investigate the effects of the alkyl chain length of the lyotropic LCP on producing liquid crystalline ordering through the solvent-assisted fluidic patterning.

  • PDF

Fabrication of Flexible Surface-enhanced Raman-Active Nanostructured Substrates Using Soft-Lithography

  • Park, Ji-Yun;Jang, Seok-Jin;Yeo, Jong-Seok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.411-411
    • /
    • 2012
  • Over the recent years, surface enhanced Raman spectroscopy (SERS) has dramatically grown as a label-free detecting technique with the high level of selectivity and sensitivity. Conventional SERS-active nanostructured layers have been deposited or patterned on rigid substrates such as silicon wafers and glass slides. Such devices fabricated on a flexible platform may offer additional functionalities and potential applications. For example, flexible SERS-active substrates can be integrated into microfluidic diagnostic devices with round-shaped micro-channel, which has large surface area compared to the area of flat SERS-active substrates so that we may anticipate high sensitivity in a conformable device form. We demonstrate fabrication of flexible SERS-active nanostructured substrates based on soft-lithography for simple, low-cost processing. The SERS-active nanostructured substrates are fabricated using conventional Si fabrication process and inkjet printing methods. A Si mold is patterned by photolithography with an average height of 700 nm and an average pitch of 200 nm. Polydimethylsiloxane (PDMS), a mixture of Sylgard 184 elastomer and curing agnet (wt/wt = 10:1), is poured onto the mold that is coated with trichlorosilane for separating the PDMS easily from the mold. Then, the nano-pattern is transferred to the thin PDMS substrates. The soft lithographic methods enable the SERS-active nanostructured substrates to be repeatedly replicated. Silver layer is physically deposited on the PDMS. Then, gold nanoparticle (AuNP) inks are applied on the nanostructured PDMS using inkjet printer (Dimatix DMP 2831) to deposit AuNPs on the substrates. The characteristics of SERS-active substrates are measured; topology is provided by atomic force microscope (AFM, Park Systems XE-100) and Raman spectra are collected by Raman spectroscopy (Horiba LabRAM ARAMIS Spectrometer). We anticipate that the results may open up various possibilities of applying flexible platform to highly sensitive Raman detection.

  • PDF

A Study on Feature Division using Sliced Information of STL Format (STL 포맷의 단면정보를 이용한 형상분할에 관한 연구)

  • Ban, Gab-Su
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.5 no.2
    • /
    • pp.141-146
    • /
    • 2002
  • Stereolithography is the best known as rapid prototyping system. It uses the STL format data which is generated from CAD system. In this study, One of the main function of this developed CAM system deals with shape modification which divide a shape into two parts or more. The cross section of a STL part by a z-level is composed with nested or single polygonal closed loop. In order to make RP product, closed loops must fill with triangular facets from SSET and recover sliced triangular facets which is located normal direction to the cross sectional plane. The system is development by using Visuall C++ compiler in the environment of pentium PC. Operating system is Windows NT workstaion from Micro-Soft.

  • PDF

$\mu$CP Process Technology for Nanopattern Implementation (나노패턴 구현을 위한 $\mu$CP 공정기술)

  • 조정대;신영재;김광영
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.624-627
    • /
    • 2003
  • Microcontact printing (uCP) of alkanethiols on gold was the first representative of soft-lithography processes. This is an attempt to enhance the accuracy of classical to a precision comparable with optical lithography, creating a low-cost, large-area, and high-resolution patterning process. Microcontact printing relies on replication of a pattered PDMS stamp from a master to form an elastic stamp that can be inked with a SAM solution(monolayer -forming ink) using either immersion inking or contact inking. The inked PDMS stamp is then used to print a pattern that selectively protects the gold substrate during the subsequent etch.

  • PDF