DOI QR코드

DOI QR Code

A Study on Polymer Replica Materials for Nanotransfer Printing

패턴전사프린팅용 고분자 복제 소재 연구

  • Kang, Young Lim (Department of Materials Science and Engineering, Pukyong National University) ;
  • Park, Woon Ik (Department of Materials Science and Engineering, Pukyong National University)
  • Received : 2021.04.14
  • Accepted : 2021.04.23
  • Published : 2021.07.01

Abstract

For the past several decades, various next-generation patterning methods have been developed to obtain well-designed nano-to-micro structures, such as imprint lithography, nanotransfer printing (nTP), directed self-assembly (DSA), E-beam lithography, and so on. Especially, nTP process has much attention due to its low processing cost, short processing time, and good compatibility with other patterning techniques in achieving the formation of high-resolution functional patterns. To transfer functional patterns onto desirable substrates, the use of soft materials is required for precise replication of master mold. Here, we introduce a simple and practical nTP method to create highly ordered structures using various polymeric replica materials. We found that polymethyl methacrylate (PMMA), polystyrene (PS), and polyvinylpyridine (PVP) are possible candidates for replica materials for reliable duplication of Si master mold based on systematic analysis of pattern visualization. Furthermore, we successfully obtained well-defined metal and oxide nanostructures with functionality on target substrates by using replica patterns, through deposition and transfer process. We expect that the several candidates of replica materials can be exploited for effective nanofabrication of complex electronic devices.

Keywords

Acknowledgement

이 논문은 부경대학교 자율창의학술연구비(2019년, CD-2019-1381)에 의하여 연구되었음.

References

  1. J. Miao, X. Liu, K. Jo, K. He, R. Saxena, B. Song, H. Zhang, J. He, M. G. Han, W. Hu, and D. Jariwala, Nano Lett., 20, 2907 (2020). [DOI: https://doi.org/10.1021/acs.nanolett.0c00741]
  2. C. Palencia, K. Yu, and K. Boldt, ACS Nano, 14, 1227 (2020). [DOI: https://doi.org/10.1021/acsnano.0c00040]
  3. X. Jin, C. Liu, T. Xu, L. Su, and X. Zhang, Biosens. Bioelectron., 165, 112412 (2020). [DOI: https://doi.org/10.1016/j.bios.2020.112412]
  4. A. H. Sodhro, Z. Luo, G. H. Sodhro, M. Muzamal, J.J.P.C. Rodrigues, and V.H.C. de Albuquerque, Future Gener. Comput. Syst., 95, 667 (2019). [DOI: https://doi.org/10.1016/j.future.2018.12.008]
  5. X. Chen, B. Liu, C. Zhong, Z. Liu, J. Liu, L. Ma, Y. Deng, X. Han, T. Wu, W. Hu, and J. Lu, Adv. Energy Mater., 7, 1700779 (2017). [DOI: https://doi.org/10.1002/aenm.201700779]
  6. M. Mativenga, D. Geng, B. Kim, and J. Jang, ACS Appl. Mater. Interfaces, 7, 1578 (2015). [DOI: https://doi.org/10.1021/am506937s]
  7. T. W. Park, H. Jung, Y. R. Cho, J. W. Lee, and W. I. Park, Korean J. Met. Mater., 56, 910 (2018). [DOI: https://doi.org/10.3365/KJMM.2018.56.12.910]
  8. T. W. Park and W. I. Park, Korean J. Met. Mater., 58, 145 (2020). [DOI: https://doi.org/10.3365/KJMM.2020.58.2.145]
  9. B. K. You, W. I. Park, J. M. Kim, K. I. Park, H. K. Seo, J. Y. Lee, Y. S. Jung, and K. J. Lee, ACS Nano, 8, 9492 (2014). [DOI: https://doi.org/10.1021/nn503713f]
  10. H. J. Park, Y. J. Cha, and J. S. Kwak, J. Korean Inst. Electr. Electron. Mater. Eng., 32, 47 (2019). [DOI: https://doi.org/10.4313/JKEM.2019.32.1.47]
  11. J. W. Jeong, S. R. Yang, Y. H. Hur, S. W. Kim, K. M. Baek, S. Yim, H. I. Jang, J. H. Park, S. Y. Lee, C. O. Park, and Y. S. Jung, Nat. Commun., 5, 5387 (2014). [DOI: https://doi.org/10.1038/ncomms6387]
  12. W. I. Park, B. K. You, B. H. Mun, H. K. Seo, J. Y. Lee, S. Hosaka, Y. Yin, C. A. Ross, K. J. Lee, and Y. S. Jung, ACS Nano, 7, 2651 (2013). [DOI: https://doi.org/10.1021/nn4000176]
  13. W. I. Park, J. M. Yoon, M. Park, J. Lee, S. K. Kim, J. W. Jeong, K. Kim, H. Y. Jeong, S. Jeon, K. S. No, J. Y. Lee, and Y. S. Jung, Nano Lett., 12, 1235 (2012). [DOI: https://doi.org/10.1021/nl203597d]
  14. C. Carbonell, D. Valles, A. M. Wong, A. S. Carlini, M. A. Touve, J. Korpanty, N. C. Gianneschi, and A. B. Braunschweig, Nat. Commun., 11, 1244 (2020). [DOI: https://doi.org/10.1038/s41467-020-14990-x]
  15. M. Fromel, M. Li, and C. W. Pester, Macromol. Rapid Commun., 41, 2000177 (2020). [DOI: https://doi.org/10.1002/marc.202000177]
  16. S. K. Kim, J. Nanosci. Nanotechnol., 16, 5415 (2016). [DOI: https://doi.org/10.1166/jnn.2016.12254]
  17. W. I. Park, K. Kim, H. I. Jang, J. W. Jeong, J. M. Kim, J. Choi, J. H. Park, and Y. S. Jung, Small, 8, 3762 (2012). [DOI: https://doi.org/10.1002/smll.201201407]
  18. M. J. Kim, W. I. Park, Y. J. Choi, Y. K. Jung, and K. H. Kim, RSC Adv., 6, 21105 (2016). [DOI: https://doi.org/10.1039/c6ra00350h]
  19. J. W. Jeong, W. I. Park, L. M. Do, J. H. Park, T. H. Kim, G. Chae, and Y. S. Jung, Adv. Mater., 24, 3526 (2012). [DOI: https://doi.org/10.1002/adma.201200356]
  20. J. Ko, Z. J. Zhao, S. H. Hwang, H. J. Kang, J. Ahn, S. Jeon, M. Bok, Y. Jeong, K. Kang, I. Cho, J. H. Jeong, and I. Park, ACS Nano, 14, 2191 (2020). [DOI: https://doi.org/10.1021/acsnano.9b09082]
  21. T. W. Park and W. I. Park, J. Korean Inst. Electr. Electron. Mater. Eng., 31, 510 (2018). [DOI: https://doi.org/10.4313/JKEM.2018.31.7.510]
  22. T. W. Park, M. Byun, H. Jung, G. R. Lee, J. H. Park, H. I. Jang, J. W. Lee, S. H. Kwon, S. Hong, J. H. Lee, Y. S. Jung, K. H. Kim, and W. I. Park, Sci. Adv., 6, eabb6462 (2020). [DOI: https://doi.org/10.1126/sciadv.abb6462]