• Title/Summary/Keyword: Soft-Hard

Search Result 1,356, Processing Time 0.023 seconds

Effects of Media Composition on Plant Regeneration and Callus Formation of Abeliophyllum distichum Nakai

  • Lee, Cheol-Hee;Jin, Yeon-Hee;Chang, Young-Deug;Hwang, Ju-Kwang
    • Korean Journal of Plant Resources
    • /
    • v.21 no.3
    • /
    • pp.184-191
    • /
    • 2008
  • This experiments were carried out to find out the effects of different explant materials, kinds and concentration of plant growth regulators, and total nitrogen and sucrose contents on the in vitro regeneration of Abeliophyllum distichum Nakai. The effects of growth regulators on regeneration from 3 explant sources (leaf, internode and node) were more or less same. Leaf explants produced only callus with 2ip (Isopentenyladenine) and NAA (Naphthaleneacetic acid) treatment and other regulators had no effects. Test with internode explants yielded about same results but callus was obtained with 2,4-D (2,4-Dichlorophenoxyacetic acid). Node explants resulted in shoot regeneration by all regulator treatment except NAA and 2,4-D, but control also showed similar results. Callus formation from internode and node explants was vigorous by 2ip, zeatin, and 2,4-D treatments and high NAA concentration resulted in higher callus formation. In this experiment, various mixed treatment of growth regulators were also employed, using node as explant material. Shoot regeneration was obtained with BA (Benzyl adenine) + NAA treatments but the results were comparable with control. Generally shoot and root regeneration was poor with all combined treatment except 2ip + NAA and 2,4-D + NAA. However, callus was formed readily with all treatments. In this experiment, combined treatments of regulators were applied on the callus derived from singular regulator treatment. The results showed no shoot and root regeneration with any combination of 2,4-D, IAA (Indoleacetic acid) and NAA, but soft milky white callus was formed in all the treatments. No shoot and root regeneration was observed with any combination of 2iP, NAA and IAA, but somewhat hard, light green callus was formed in all the treatments. Callus formation decreased with high kinetin concentration in case of kinetin + NAA treatment. The experiments with total nitrogen content of media showed that low concentrations of 15 and 30mM were effective for the shoot and root regeneration. Sucrose experiment demonstrated shoot regeneration with 1${\sim}$4% concentration, and root and callus formation with 2${\sim}$4%. No root and callus formation was observed with 0 and 1% sucrose.

Assessment of Perspective Development of Transport and Logistics Systems at Macro and Micro Level under the Conditions of Industry 4.0 Integration

  • Maiboroda, Olha;Bezuhla, Liudmyla S.;Gukaliuk, Andrii F.;Shymanska, Viktoriia;Momont, Tetiana;Ilchenko, Tetiana V.
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.3
    • /
    • pp.235-244
    • /
    • 2021
  • The change of the development of transport and logistics systems occurs with the active change of technology and the advent of the era of Industry 4.0. It requires modernization of approaches to the development of transport and logistics systems at the macro and micro levels. The present study aims to identify perspective directions of development and evolution, find out the existing obstacles in the integration of technological solutions of transport and logistics systems at the macro and micro levels. This study is based on a quantitative and qualitative methodology for assessing the level of integration of technologies into transport and logistics systems to study the prospects for their development at the micro level. Macroeconomic indicators of transport and logistics in the context of different regions of the world were used to quantify the development prospects. For a qualitative assessment of the development of the transport and logistics system, the case study method was used. The object of the study was selected logistics company Sensco Logistics Inc., Austin TX. At the macro level, countries with more innovative logistics sectors have stronger mechanisms for coordinating private sector activities. Simplification of administrative procedures of control and regulation by the public sector in order to facilitate trade between countries is a promising direction for the development of transport and logistics systems. Such reforms are more effective in developing a "rigid" transport infrastructure. The integration of Industry 4.0 technology solutions into the international logistics sector is defined by political and legal barriers, especially in developing countries. In low-income countries, hard and soft infrastructure reforms are hindering the development of logistics companies that provide transport services. This determines the national level of development of transport and logistics systems, and in general the global level of development of transport and logistics. In developed countries, the legal barriers to the development of new technological logistics are environmental requirements for the integration of technologies into the transport system. These trends are slowing down the development of International Logistics, which, compared to other industries, is slower to integrate Industry 4.0 technologies. This study combines macroeconomic factors that determine the prospects for the development of transport and logistics systems at the micro level.

Development of Eco-friendly Electric Transmission Towers in KEPCO (환경조화형 철탑 개발)

  • Lee, Won-kyo;Mun, Sung-Duk;Shin, Kooyong
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.5 no.3
    • /
    • pp.135-140
    • /
    • 2019
  • Lattice towers and tubular steel poles have been commonly used for electrical power transmission in Korea. They are durable, structurally stable, simple and can easily be constructed in limited spaces. However, residents are opposed to construct transmission lattice towers in their areas because they are not visually attractive, and electrical field occur at the transmission lines. Underground transmissions have been used instead of the traditional towers to resolve these problems, however they are not cost effective to construct and run. Therefore, we have developed eco-friendly towers that are more attractive, well blending into the surrounding environment, and much more economical than underground transmissions. There are four categories of the eco-friendly electric transmission towers about design aspects. Firstly, there is decoration type such as tree tower and ensemble tower. Tree tower looks like actual trees with leaves and branches so it blends into surroundings. Ensemble towers were designed after pair of crane birds. Those towers have decoration features and art works. Structural examination and manufacturing this type would be very similar to the conventional transmission towers. Secondly, there is arm design type such as traditional tower. Design features are added to the existing towers. As partial design can be adoptable on these types, it can easily meet height regulations and attach to conventional lattice towers and tubular steel poles. Also, these towers are more economical than others. Third category is multipurpose type such as Sail Tower. These towers have simple pole or tubular structure with features which can be used as information message board, public relations and much more. This type will face greater wind pressure because of the area of the board, also visibility must take into consideration. Lastly, there is moulding type such as arc pylon. It is different shape to the conventional towers - lattice towers and tubular steel poles. Dramatic design changes have been adapted - from a hard and static tower to a soft and curved tower. These towers will well stand out in the field. However, structural examination and manufacturing this type would be difficult and costly. Also certain towers of this type would require scaffolding or false work to construct, which will result in limitations of the construction area. This paper shows KEPCO 154 kV Sail tower in detail. KEPCO 154 kV Sail tower that is included in fabrication of sample tower and tower testing has developed and the results are presented in this paper. We hope that sail tower is also considered as a solution to have public acceptance or to create a familiar atmosphere among towers and people in coastal area.

Case Study on Design Efficiency and Bearing Capacity Characteristics of Bored PHC Piles (PHC 매입말뚝의 설계효율과 지지력 특성 사례분석)

  • Yun, Jung-Mann;Yea, Geu-Guwen;Kim, Hong-Yeon;Choi, Yong-Kyu
    • Journal of the Korean Geosynthetics Society
    • /
    • v.18 no.3
    • /
    • pp.45-53
    • /
    • 2019
  • In this study, it was analyzed the cases of bored PHC piles designed for the building foundations. The overall length of the piles varies within a maximum of 35 m. However, the average length was 17.0 to 18.9 m depending on the kind of the bedrock, with no significant difference. The socket length entered into the bedrock was designed with approximately 58% of the whole piles being 1m, the minimum length of the specification, and up to 5m. Although the range in design efficiency was very large, on average it was about 70%, consistent with the usual known extent. Applications with low design efficiency were mainly shown on the foundation of low-rise buildings or rides with low design load. On the weathered rock, the design load, which governs the design result was widely distributed at 65 to 97% of allowable bearing capacity of ground. The ratio of allowable axial load of piles to allowable bearing capacity of ground is also widely distributed between 36 and 115%, so optimization efforts are required along with design efficiency. On the other hand, the allowable bearing capacity on the soft or hard rock was highly equal, mostly within 90% of the allowable axial load of piles. In the design, the end bearing resistance averaged over 75% of the allowable bearing capacity. However, the results of the dynamic pile load test show that the end bearing resistance was predominant under the E.O.I.D conditions, and in some cases, the end bearing resistance was at least 25% under the restrike conditions.

Full mouth rehabilitation with implant-supported fixed prosthesis via dental CAD-CAM system (Dental CAD-CAM system을 통한 고정성 전악 임플란트 수복 증례)

  • Hong, Jeong-Min;Han, Jung-Suk;Yoon, Hyung-In;Yeo, In-Sung Luke
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.59 no.1
    • /
    • pp.97-106
    • /
    • 2021
  • Dental implants should be placed at ideal sites for implant-supported restorations. For a patient with insufficient residual ridge, mouth preparation including surgical intervention can be indicated to establish a soft and hard tissue environment favorable for a definitive prosthesis. Prosthodontic design based on computer-guided surgery and computer-aided design-computer-aided manufacturing (CAD-CAM) provides a visual blueprint allowing a clinician to assess the necessity of such a surgical intervention beforehand. In this case, a definitive restoration was planned and made via a CAD-CAM system according to the patient's oral status before treatment, simulated surgical interventions and serial provisional restorations. Based on the planning, a guided template was made and the implants were installed with bone augmentation using the template. Customized abutments, the first and the second provisional restorations were designed and fabricated by CAD-CAM. The definitive restorations were digitally made following the shape of the second provisional prostheses, which were confirmed in the patient's mouth. The patient was satisfied with the masticatory, phonetic and aesthetic functions of these definitive prostheses.

A TBM data-based ground prediction using deep neural network (심층 신경망을 이용한 TBM 데이터 기반의 굴착 지반 예측 연구)

  • Kim, Tae-Hwan;Kwak, No-Sang;Kim, Taek Kon;Jung, Sabum;Ko, Tae Young
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.23 no.1
    • /
    • pp.13-24
    • /
    • 2021
  • Tunnel boring machine (TBM) is widely used for tunnel excavation in hard rock and soft ground. In the perspective of TBM-based tunneling, one of the main challenges is to drive the machine optimally according to varying geological conditions, which could significantly lead to saving highly expensive costs by reducing the total operation time. Generally, drilling investigations are conducted to survey the geological ground before the TBM tunneling. However, it is difficult to provide the precise ground information over the whole tunnel path to operators because it acquires insufficient samples around the path sparsely and irregularly. To overcome this issue, in this study, we proposed a geological type classification system using the TBM operating data recorded in a 5 s sampling rate. We first categorized the various geological conditions (here, we limit to granite) as three geological types (i.e., rock, soil, and mixed type). Then, we applied the preprocessing methods including outlier rejection, normalization, and extracting input features, etc. We adopted a deep neural network (DNN), which has 6 hidden layers, to classify the geological types based on TBM operating data. We evaluated the classification system using the 10-fold cross-validation. Average classification accuracy presents the 75.4% (here, the total number of data were 388,639 samples). Our experimental results still need to improve accuracy but show that geology information classification technique based on TBM operating data could be utilized in the real environment to complement the sparse ground information.

Study on the Correlation between Quality of Cement and Amount of Alternative Fuels used in Clinker Sintering Process (시멘트 클링커 소성공정 대체연료 사용량과 시멘트 품질간 상관관계 연구)

  • Choi, Jaewon;Koo, Kyung-Mo;You, Byeong-Know;Cha, Wan-Ho;Kang, Bong-Hee
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.1
    • /
    • pp.75-84
    • /
    • 2021
  • In this study, the correlation between cement quality(chemical composition, mineral composition, and compressive strength) and amount of waste alternative fuels used in the cement manufacturing process and was investigated. Cement manufacturing facility using coal, soft plastics(plastics that are easily scattered by wind power, such as vinyls), hard plastics(plastics that do not contain foreign substances, waste rubber, PP, etc.) and reclaimed oil was analised. Data was collected for 3 years from 2017 to 2019 and let the amount of fuels used as an independent variable and cement quality data as a dependent variable. As a result, depending on the type and quality of the alternative fuel has not a significant effect on the chemical composition(Cl and LSF) and mineral composition(f-CaO, C3S contents). Contrary to the concern that the compressive strength of cement would decrease, there was a significant positive correlation between amount of alternative fuel used and cement compressive strength.

Investigation on Ferroelectric and Magnetic Properties of Pb(Fe1/2Nb1/2)O3 Fe-Site Engineered with Antisymmetric Exchange Interaction (반대칭 교환 상호작용을 갖도록 Fe-Site가 제어된 PbFe1/2Nb1/2O3의 강유전/자기적 특성 연구)

  • Park, Ji-Hun;Lee, Ju-Hyeon;Cho, Jae-Hyeon;Jang, Jong Moon;Jo, Wook
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.3
    • /
    • pp.297-302
    • /
    • 2022
  • We investigated the origin of magnetic behaviors induced by an asymmetric spin exchange interaction in Fe-site engineered lead iron niobate [Pb(Fe1/2Nb1/2)O3, PFN], which exhibits a room-temperature multiferroicity. The magnitude of spin exchange interaction was regulated by the introduced transition metals with a distinct Bohr magneton, i.e., Cr, Co, and Ni. All compositions were found to have a single-phase perovskite structure keeping their ferroelectric order except for Cr introduction. We discovered that the incorporation of each transition metal imposes a distinct magnetic behavior on the lead iron niobate system; antiferro-, hard ferro-, and soft ferromagnetism for Cr, Co, and Ni, respectively. This indicates that orbital occupancy and interatomic distance play key roles in the determination of magnetic behavior rather than the magnitude of the individual Bohr magneton. Further investigations are planned, such as X-ray absorption spectroscopy, to clarify the origin of magnetic properties in this system.

A study on the wear and replacement characteristics of the disc cutter through data analysis of the large diameter slurry shield TBM field (대구경 이수식 쉴드TBM 현장의 데이터 분석을 통한 디스크커터의 마모 및 교체 특성 연구)

  • Park, Jinsoo;Song, Ki-Il
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.1
    • /
    • pp.57-78
    • /
    • 2022
  • The disc cutter and cutterbit, which are the most important factors to increase the excavation efficiency of TBM, are key factors in the design and construction of the cutter head. The arrangement, spacing, number, size, and material of disc cutters suitable for the ground conditions determine the success or failure of TBM construction. The disc cutter, which is a representative consumable part in TBM construction, can cause enormous disruption to the construction cost as well as the construction cost unless accurate prediction of wear and replacement cycle is accompanied. Therefore, in this study, the method of calculating the replacement cycle of the disc cutter calculated at the time of design for the slurry shield TBM field, and the depth of wear and replacement location of the disc cutter that occurred during actual construction were compared by analyzing the field data. For a quantitative comparison, weathered soil/weathered rock, soft rock, and hard rock were classified according to the ground in the section showing constant excavation data, and the trajectory of circle was different depending on the location of the disc cutter, so it was compared and analyzed.

Quality Characteristics and Variation of Wheat Breeding Lines (소맥육성계통의 품질특성과 변이에 관하여)

  • Chang, H.G.;Ryu, I.S.;Cho, C.H.;Bae, S.H.
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.24 no.1
    • /
    • pp.37-45
    • /
    • 1979
  • Experiments were conducted to determine the physicochemical properties for 1.382 tested wheat harvested in 1977. All the tested wheats had a milling yield rate of 49 to 71.5 percent. The cross combination involving S.son, Caprock and CI 12703 was generally the higher in flour yield-Flour protein content ranged from about 7 percent up to about 17 percent and sedimentation values ranged from below 20 cc to 70 cc. The cross combinations involving Bb #1 gave higher protein content and higher sedimentation values than the other combinations. The distribution of the Pelshenke value was from less 20 min. to more than 180 min. Specific sedimentation values of the 329 tested wheats showed 8.1 percent to be hard quality, while 54.4 percent were of soft quality. Intermediate wheats accounted for 37.5 percent. The lines having high milling yield rate, protein content and sedimentation value from the 329 tested wheats were Strampelli \times 69D-3607/Jogwang. S.son \times Caprock. Suweon #185 \times Toropi and Suweon #185 \times Ciano. The varieties or lines including Pribog, CI 14496 and Sturdy \times Scout/ Strampelli \times Bb-Cno showed high milling yield but low protein content and low sedimentation values. being under 9 percent and 30 cc respectively.

  • PDF