DOI QR코드

DOI QR Code

Case Study on Design Efficiency and Bearing Capacity Characteristics of Bored PHC Piles

PHC 매입말뚝의 설계효율과 지지력 특성 사례분석

  • Received : 2019.04.29
  • Accepted : 2019.09.17
  • Published : 2019.09.30

Abstract

In this study, it was analyzed the cases of bored PHC piles designed for the building foundations. The overall length of the piles varies within a maximum of 35 m. However, the average length was 17.0 to 18.9 m depending on the kind of the bedrock, with no significant difference. The socket length entered into the bedrock was designed with approximately 58% of the whole piles being 1m, the minimum length of the specification, and up to 5m. Although the range in design efficiency was very large, on average it was about 70%, consistent with the usual known extent. Applications with low design efficiency were mainly shown on the foundation of low-rise buildings or rides with low design load. On the weathered rock, the design load, which governs the design result was widely distributed at 65 to 97% of allowable bearing capacity of ground. The ratio of allowable axial load of piles to allowable bearing capacity of ground is also widely distributed between 36 and 115%, so optimization efforts are required along with design efficiency. On the other hand, the allowable bearing capacity on the soft or hard rock was highly equal, mostly within 90% of the allowable axial load of piles. In the design, the end bearing resistance averaged over 75% of the allowable bearing capacity. However, the results of the dynamic pile load test show that the end bearing resistance was predominant under the E.O.I.D conditions, and in some cases, the end bearing resistance was at least 25% under the restrike conditions.

본 연구에서는 건축기초에 적용된 매입 PHC말뚝의 설계사례를 분석하였다. 전반적인 말뚝길이는 최대 35m 이내에서 다양하나, 지지층 조건에 따른 평균 길이는 17.0~18.9m로 큰 차이가 없었다. 지지층 소켓길이는 전체의 약 58%가 시방기준 최소길이인 1m에 따라 설계되었고, 최대 5m까지 설계되었다. 설계효율은 그 편차가 매우 크나 평균 약 70%로서 통상 알려진 범위와 일치하였다. 설계효율이 낮은 용도는 주로 설계하중이 적은 저층건물이나 놀이기구 기초 등으로 나타났다. 풍화암 지지층에서 설계하중은 설계를 지배하는 지반 허용지지력의 65~97%, 허용지지력에 대한 말뚝 허용축하중의 비는 36~115%로 광범위하게 분포하므로 설계효율과 함께 최적화 노력이 요구된다. 반면, 연 경암 지지층의 허용지지력은 대부분 말뚝 허용축하중의 90% 내외로 매우 균등했다. 설계 허용지지력은 선단지지력이 평균 75% 이상을 차지하였으나, 현장재하시험 연구결과를 보면 초기항타 조건에서는 선단지지력이 지배적이며, 재항타 조건에서는 선단지지력이 최소 25%에 불과한 경우도 있었다. 따라서, 설계시 산정된 허용지지력은 시공 초기조건만을 반영하는 것이며, 시간이 경과할수록 말뚝 주면부로의 하중전이가 증가하고, 일부는 시험시 타격에너지 부족으로 선단지지력의 확인이 이루어지지 못한다고 볼 수 있다. 균질한 지반으로 가정했을 때 근입비가 증가할수록 허용축하중이 감소하는 경향이 있었고, 이와 유사하게 지반의 허용지지력도 감소하는 경향을 보여, 큰 설계하중으로 초고강도 말뚝을 적용할 경우 지반의 지지력을 최대한 활용할 수 있음을 알 수 있었다.

Keywords

References

  1. Architectural Institute of Korea (2005), Design Standards for Building Foundation Structure. (in Korean)
  2. Chae, S. G. (2018), Design and Construction Practice of PHC Pile Foundation, GS E&C Co., Seoul, pp.142-143. (in Korean)
  3. Chae, S. G. and Kim, H. G. (2014), Design and Construction Manual of Large Diameter PHC Piles, ENG Book Co., Seoul, p.146. (in Korean)
  4. Chae, S. G., Park, J. H., Ryu, G. R. and Kim, J. H. (2015), "Introduction to Standard Design and Construction Consulting Method of Bored Pile and the Application Case", Journal of the Korean Geotechnical Society, Vol.31, No.2, pp.8-18 (in Korean)
  5. Choi, Y. K. and Kim, M. H. (2018), "Axial Bearing Characteristics of Tip-transformed PHC Piles through Field Tests", Journal of the Korean Geotechnical Society, Vol.34, No.11, pp.107-119. (in Korean) https://doi.org/10.7843/KGS.2018.34.11.107
  6. Korea Land and Housing Corporation (2015), Application Plan for Efficiency of Pile Foundation, p.143. (in Korean)
  7. Korea National Housing Corporation (2008), Special Specification for Housing Projects. (in Korean)
  8. Korean Society of Civil Engineers (2008), Design Standards Commentary for Road Bridge. (in Korean)
  9. Ministry of Land, Infrastructure and Transport (2015), Special Specification for General Road Construction, p.371. (in Korean)
  10. Ministry of Land, Infrastructure and Transport (2016), Construction Specification for Road Bridge, p.282. (in Korean)
  11. Ministry of Land, Infrastructure and Transport (2016), Korean Construction Specification for Ready-made Piles (KCS 11 50 15 : 2016), p.10-11. (in Korean)
  12. Ministry of Land, Infrastructure and Transport (2017), Special Specification for Railway Construction, p.5-29. (in Korean)
  13. Ministry of Land, Infrastructure and Transport (2019), Design Standards for Building Foundation Structure (KDS 41 20 00 : 2019), p.18. (in Korean)
  14. Ministry of Land, Infrastructure and Transport and Korea Expressway Corporation (2018), Expressway Construction Specification for Ready-made Piles (EXCS 11 50 15 : 2018), p.11. (in Korean)
  15. Ministry of Land, Transport and Maritime Affairs (2008), Design Standards Commentary for Structure Foundation. (in Korean)
  16. Paik, K. H. (1997), "Characteristics of the Bearing Capacity for New Auger-Drilled Piles", Journal of the Korean Geotechnical Society, Vol.13, No.4, pp.25-35. (in Korean)
  17. Park, J. B., Lee, B. S. and Park, Y. B. (2015), "Analytical Study on the Appropriateness of Design Formula and Possibility of Improving Bearing Capacity of Bored Pile", LHI Journal, Vol.6, No.3, pp.139-145. (in Korean)
  18. Seoul Metropolitan Government (2018), Construction Specification for Ready-made Piles (SMCS 11 50 15∶2018), p.17. (in Korean)
  19. Woo, G. S., Park, J. B., Seo, M. J. and Lee, J. S. (2016), "Evaluation of Allowable Bearing Capacity of 600 mm Diameter Preboring PHC Piles Using Dynamic Load Test", Journal of the Korean Geotechnical Society, Vol.32, No.11, pp.61-72. (in Korean) https://doi.org/10.7843/kgs.2016.32.11.61