• Title/Summary/Keyword: Soft-Computing

Search Result 209, Processing Time 0.02 seconds

Design, modelling and analysis of a new type of IPMC motor

  • Kolota, Jakub
    • Smart Structures and Systems
    • /
    • v.24 no.2
    • /
    • pp.223-231
    • /
    • 2019
  • The properties of Electroactive Polymer (EAP) materials are attracting the attention of engineers and scientists from many different disciplines. From the point-of-view of robotics, Ionic Polymer Metal Composites (IPMC) belong to the most developed group of the EAP class. To allow effective design of IPMC-actuated mechanisms with large induced strains, it is necessary to have adequate analytical tools for predicting the behavior of IPMC actuators as well as simulating their response as part of prototyping methodologies. This paper presents a novel IPMC motor construction. To simulate the bending behavior that is the dominant phenomenon of motor movement process, a nonlinear model is used. To accomplish the motor design, the IPMC model was identified via a series of experiments. In the proposed model, the curvature output and current transient fields accurately track the measured responses, which is verified by measurements. In this research, a three-dimensional Finite Element Method (FEM) model of the IPMC motor, composed of IPMC actuators, simultaneously determines the mechanical and electrical characteristics of the device and achieves reliable analysis results. The principle of the proposed drive and the output signals are illustrated in this paper. The proposed modelling approach can be used to design a variety of controllers and motors for effective micro-robotic applications, where soft and complex motion are required.

Determining the shear strength of FRP-RC beams using soft computing and code methods

  • Yavuz, Gunnur
    • Computers and Concrete
    • /
    • v.23 no.1
    • /
    • pp.49-60
    • /
    • 2019
  • In recent years, multiple experimental studies have been performed on using fiber reinforced polymer (FRP) bars in reinforced concrete (RC) structural members. FRP bars provide a new type of reinforcement that avoids the corrosion of traditional steel reinforcement. In this study, predicting the shear strength of RC beams with FRP longitudinal bars using artificial neural networks (ANNs) is investigated as a different approach from the current specific codes. An ANN model was developed using the experimental data of 104 FRP-RC specimens from an existing database in the literature. Seven different input parameters affecting the shear strength of FRP bar reinforced RC beams were selected to create the ANN structure. The most convenient ANN algorithm was determined as traingdx. The results from current codes (ACI440.1R-15 and JSCE) and existing literature in predicting the shear strength of FRP-RC beams were investigated using the identical test data. The study shows that the ANN model produces acceptable predictions for the ultimate shear strength of FRP-RC beams (maximum $R^2{\approx}0.97$). Additionally, the ANN model provides more accurate predictions for the shear capacity than the other computed methods in the ACI440.1R-15, JSCE codes and existing literature for considering different performance parameters.

Soft computing-based estimation of ultimate axial load of rectangular concrete-filled steel tubes

  • Asteris, Panagiotis G.;Lemonis, Minas E.;Nguyen, Thuy-Anh;Le, Hiep Van;Pham, Binh Thai
    • Steel and Composite Structures
    • /
    • v.39 no.4
    • /
    • pp.471-491
    • /
    • 2021
  • In this study, we estimate the ultimate load of rectangular concrete-filled steel tubes (CFST) by developing a novel hybrid predictive model (ANN-BCMO) which is a combination of balancing composite motion optimization (BCMO) - a very new optimization technique and artificial neural network (ANN). For this aim, an experimental database consisting of 422 datasets is used for the development and validation of the ANN-BCMO model. Variables in the database are related with the geometrical characteristics of the structural members, and the mechanical properties of the constituent materials (steel and concrete). Validation of the hybrid ANN-BCMO model is carried out by applying standard statistical criteria such as root mean square error (RMSE), coefficient of determination (R2), and mean absolute error (MAE). In addition, the selection of appropriate values for parameters of the hybrid ANN-BCMO is conducted and its robustness is evaluated and compared with the conventional ANN techniques. The results reveal that the new hybrid ANN-BCMO model is a promising tool for prediction of the ultimate load of rectangular CFST, and prove the effective role of BCMO as a powerful algorithm in optimizing and improving the capability of the ANN predictor.

Towards Effective Analysis and Tracking of Mozilla and Eclipse Defects using Machine Learning Models based on Bugs Data

  • Hassan, Zohaib;Iqbal, Naeem;Zaman, Abnash
    • Soft Computing and Machine Intelligence
    • /
    • v.1 no.1
    • /
    • pp.1-10
    • /
    • 2021
  • Analysis and Tracking of bug reports is a challenging field in software repositories mining. It is one of the fundamental ways to explores a large amount of data acquired from defect tracking systems to discover patterns and valuable knowledge about the process of bug triaging. Furthermore, bug data is publically accessible and available of the following systems, such as Bugzilla and JIRA. Moreover, with robust machine learning (ML) techniques, it is quite possible to process and analyze a massive amount of data for extracting underlying patterns, knowledge, and insights. Therefore, it is an interesting area to propose innovative and robust solutions to analyze and track bug reports originating from different open source projects, including Mozilla and Eclipse. This research study presents an ML-based classification model to analyze and track bug defects for enhancing software engineering management (SEM) processes. In this work, Artificial Neural Network (ANN) and Naive Bayesian (NB) classifiers are implemented using open-source bug datasets, such as Mozilla and Eclipse. Furthermore, different evaluation measures are employed to analyze and evaluate the experimental results. Moreover, a comparative analysis is given to compare the experimental results of ANN with NB. The experimental results indicate that the ANN achieved high accuracy compared to the NB. The proposed research study will enhance SEM processes and contribute to the body of knowledge of the data mining field.

Seismic Response Control of Tilted Tall Building based on Evolutionary Optimization Algorithm (경사진 고층건물의 진화최적화 알고리즘에 기반한 지진응답 제어)

  • Kim, Hyun-Su;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.21 no.3
    • /
    • pp.43-50
    • /
    • 2021
  • A tilted tall building is actively constructed as landmark structures around world to date. Because lateral displacement responses of a tilted tall building occurs even by its self-weight, reduction of seismic responses is very important to ensure structural safety. In this study, a smart tuned mass damper (STMD) was applied to the example tilted tall building and its seismic response control performance was investigated. The STMD was composed of magnetorheological (MR) damper and it was installed on the top floor of the example building. Control performance of the STMD mainly depends on the control algorithn. Fuzzy logic controller (FLC) was selected as a control algorithm for the STMD. Because composing fuzzy rules and tuning membership functions of FLC are difficult task, evolutionary optimization algorithm (EOA) was used to develop the FLC. After numerical simulations, it has been seen that the STMD controlled by the EOA-optimized FLC can effectively reduce seismic responses fo the tilted tall building.

Application of artificial neural networks for the prediction of the compressive strength of cement-based mortars

  • Asteris, Panagiotis G.;Apostolopoulou, Maria;Skentou, Athanasia D.;Moropoulou, Antonia
    • Computers and Concrete
    • /
    • v.24 no.4
    • /
    • pp.329-345
    • /
    • 2019
  • Despite the extensive use of mortar materials in constructions over the last decades, there is not yet a robust quantitative method, available in the literature, which can reliably predict mortar strength based on its mix components. This limitation is due to the highly nonlinear relation between the mortar's compressive strength and the mixed components. In this paper, the application of artificial neural networks for predicting the compressive strength of mortars has been investigated. Specifically, surrogate models (such as artificial neural network models) have been used for the prediction of the compressive strength of mortars (based on experimental data available in the literature). Furthermore, compressive strength maps are presented for the first time, aiming to facilitate mortar mix design. The comparison of the derived results with the experimental findings demonstrates the ability of artificial neural networks to approximate the compressive strength of mortars in a reliable and robust manner.

Effect of Human Related Factors on Requirements Change Management in Offshore Software Development Outsourcing: A theoretical framework

  • Mehmood, Faisal;Zulfqar, Sukana
    • Soft Computing and Machine Intelligence
    • /
    • v.1 no.1
    • /
    • pp.36-52
    • /
    • 2021
  • Software development organizations are globalizing their development activities increasingly due to strategic and economic gains. Global software development (GSD) is an intricate concept, and various challenges are associated with it, specifically related to the software requirement change management Process (RCM). This research aims to identify humans' related success factors (HSFs) and human-related challenges (HCHs) that could influence the RCM process in GSD organizations and propose a theoretical framework of the identified factors concerning RCM process implementation. The Systematic Literature Review (SLR) method was adopted to investigate the HSFs and HCHs. Using the SLR approach, a total of 10 SFs and 10 CHs were identified. The study also reported the critical success factors (HCSFs) and critical challenges (HCCHs) for RCM process implementation following the factors having a frequency 50% as critical. Our results reveal that five out of ten HSFs and 4 out of ten HCHs are critical for RCM process implementation in GSD. Finally, we have developed a theoretical framework based on the identified factors that indicated a relationship among the identified factors and the implementation of the RCM process in the context of GSD. We believe that the results of this research can help tackle the complications associated with the RCM in GSD environment, which is vigorous to the success and progression of GSD organizations.

Optimization of shear connectors with high strength nano concrete using soft computing techniques

  • Sedghi, Yadollah;Zandi, Yosef;Paknahad, Masoud;Assilzadeh, Hamid;Khadimallah, Mohamed Amine
    • Advances in nano research
    • /
    • v.11 no.6
    • /
    • pp.595-606
    • /
    • 2021
  • This paper conducted mainly for forecasting the behavior of the shear connectors in steel-concrete composite beams based on the different factors. The main goal was to analyze the influence of variable parameters on the shear strength of C-shaped and L-shaped angle shear connectors. The method of ANFIS (adaptive neuro fuzzy inference system) was applied to the data in order to select the most influential factors for the mentioned shear strength forecasting. Five inputs are considered: height, length, thickness of shear connectors together with concrete strength and respective slip of the shear connectors after testing. The ANFIS process for variable selection was also implemented in order to detect the predominant factors affecting the forecasting of the shear strength of C-shaped and L-shaped angle shear connectors. The results show that the forecasting methodology developed in this research is useful for enhancing the multiple performances characterizing in the shear strength prediction of C and L shaped angle shear connectors analyzing.

Comparison of machine learning algorithms to evaluate strength of concrete with marble powder

  • Sharma, Nitisha;Upadhya, Ankita;Thakur, Mohindra S.;Sihag, Parveen
    • Advances in materials Research
    • /
    • v.11 no.1
    • /
    • pp.75-90
    • /
    • 2022
  • In this paper, functionality of soft computing algorithms such as Group method of data handling (GMDH), Random forest (RF), Random tree (RT), Linear regression (LR), M5P, and artificial neural network (ANN) have been looked out to predict the compressive strength of concrete mixed with marble powder. Assessment of result suggests that, the overall performance of ANN based model gives preferable results over the different applied algorithms for the estimate of compressive strength of concrete. The results of coefficient of correlation were maximum in ANN model (0.9139) accompanied through RT with coefficient of correlation (CC) value 0.8241 and minimum root mean square error (RMSE) value of ANN (4.5611) followed by RT with RMSE (5.4246). Similarly, other evaluating parameters like, Willmott's index and Nash-sutcliffe coefficient value of ANN was 0.9458 and 0.7502 followed by RT model (0.8763 and 0.6628). The end result showed that, for both subsets i.e., training and testing subset, ANN has the potential to estimate the compressive strength of concrete. Also, the results of sensitivity suggest that the water-cement ratio has a massive impact in estimating the compressive strength of concrete with marble powder with ANN based model in evaluation with the different parameters for this data set.

Development of a new explicit soft computing model to predict the blast-induced ground vibration

  • Alzabeebee, Saif;Jamei, Mehdi;Hasanipanah, Mahdi;Amnieh, Hassan Bakhshandeh;Karbasi, Masoud;Keawsawasvong, Suraparb
    • Geomechanics and Engineering
    • /
    • v.30 no.6
    • /
    • pp.551-564
    • /
    • 2022
  • Fragmenting the rock mass is considered as the most important work in open-pit mines. Ground vibration is the most hazardous issue of blasting which can cause critical damage to the surrounding structures. This paper focuses on developing an explicit model to predict the ground vibration through an multi objective evolutionary polynomial regression (MOGA-EPR). To this end, a database including 79 sets of data related to a quarry site in Malaysia were used. In addition, a gene expression programming (GEP) model and several empirical equations were employed to predict ground vibration, and their performances were then compared with the MOGA-EPR model using the mean absolute error (MAE), root mean square error (RMSE), mean (𝜇), standard deviation of the mean (𝜎), coefficient of determination (R2) and a20-index. Comparing the results, it was found that the MOGA-EPR model predicted the ground vibration more precisely than the GEP model and the empirical equations, where the MOGA-EPR scored lower MAE and RMSE, 𝜇 and 𝜎 closer to the optimum value, and higher R2 and a20-index. Accordingly, the proposed MOGA-EPR model can be introduced as a useful method to predict ground vibration and has the capacity to be generalized to predict other blasting effects.