• Title/Summary/Keyword: Soft topology

Search Result 172, Processing Time 0.032 seconds

Isolated DC/DC Converter with Very Wide Input Voltage Ranges for Emergency Power Back-up System(EPBS) (비상전원 공급장치를 위한 넓은 입력전압 범위를 갖는 절연형 DC/DC 컨버터)

  • Chae, Hyung-Jun;Kim, Kyoung-Dong;Oh, Hyung-Rock;Lee, Jun-Young
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.16 no.4
    • /
    • pp.334-341
    • /
    • 2011
  • This paper presents a design and implementation of DC/DC converter with very wide input voltage ranges for EPBS whose input voltage is from 30V to 400V and output voltage is 48V. This converter is comprised of two stages that one is for control and the other is for only galvanic isolation. The proposed converter uses the hard-switched buck-boost topology for control purpose and soft-switched LLC resonant converter for isolation. The proposed converter has been verified with 300W design.

A Study on Development of High Efficiency PCS using in PEMFC Generation System (PEMFC 발전시스템용 고효율 PCS 개발에 관한 연구)

  • Kwak, Dong-Kurl;Jung, Won-Seok;Jung, Do-Young;Kim, Choon-Sam;Shim, Jae-Sun
    • Proceedings of the KIEE Conference
    • /
    • 2009.04b
    • /
    • pp.266-268
    • /
    • 2009
  • In this paper, authors deal with a power conditioning system (PCS) of high efficiency for a proton exchange membrane fuel cell (PEMFC) generation system. Fuel cells are a direct current (DC) power generators. They generate electricity through an electrochemical process that converts the energy stored in a fuel directly into electricity. Fuel cells have many benefits, which produce no particulate matter, nitrogen or sulfur oxides. And they have few moving parts and produce little or no noise. When fueled by hydrogen, they yield only heat and water as byproducts. Their wide application can reduce our dependence on fossil fuels and foreign sources of petroleum. This paper studies on a novel PCS circuit topology of high efficiency using in PEMFC generation system The controlling switches in the PCS is operated to soft switching. Some digital simulation results and experimental results for the proposed PCS is confirmed to the validity of the analytical results.

  • PDF

High-Efficiency Converter for Automotive Headlamp Using New H-type Snubber (새로운 H-type 스너버를 이용한 차량 헤드램프용 고효율 컨버터)

  • Kim, Sung-Joo;Kim, Sun-Pil;Jung, Tae-Uk;Park, Sung-Jun;Park, Seong-Mi
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.10
    • /
    • pp.65-72
    • /
    • 2015
  • Recently, LED light has been increasingly adopted for vehicles in both domestic and foreign automotive markets, while a variety of LED lights have been developed to be used particularly for headlamps. In this paper, we propose an H-type resonant snubber circuit topology for high efficiency of vehicle LDM (LED Driver Module) and realized LDM functions for vehicle headlamp by designing high-efficiency convertors. In addition, this study reduced the financial burden by configuring the system to control the whole with micom except for the use of individual dedicated chips to drive LED for high and low beam. In order to verify the validity of the proposed H-type resonant snubber capable of soft switching, simulations were performed using PSIM. As a result, the validity was experimentally verified by creating a prototype. Moreover, in order to actually attach the headlamp, the performance of the proposed convertor was confirmed by designing LDM to the limited size. Communications between the headlamp and higher controller were realized using LIN(Local Interconnect Network).

Soft Switching Multiple Output Charger By Using Novel Time Division Multiple Control Technique (새로운 시분할 다중 제어 기법을 이용한 소프트 스위칭 다중 출력 충전기)

  • Tran, Van-Long;Choi, Woojin
    • Proceedings of the KIPE Conference
    • /
    • 2014.07a
    • /
    • pp.191-192
    • /
    • 2014
  • Multiple output converters (MOCs) are widely used for applications which require various levels of the output voltages due to their benefits in cost, volume, and efficiency. However, most of the MOCs developed so far can regulate only one output tightly and require as many secondary windings in the transformer as the number of the outputs. In this paper, a novel Time Division Multiple Control (TDMC) method to regulate all the outputs in high precision is proposed and applied for the multiple output battery charger based on the phase shift full bridge topology to charge a multiple number of batteries at one time. The proposed converter can charge three different kinds of batteries or same kind of batteries in different state of charges (SOCs) by using constant current/constant voltage (CC/CV) charge mode independently. At the same time it can provide an even degree of tight regulation for each output to satisfy the strict ripple requirement of the battery. The validity and feasibility of the proposed method are verified through the experiments.

  • PDF

Isolated Bidirectional CLLC Resonant Converter using Digital Control for LVDC Distribution System (디지털로 제어되는 저압 직류 배전용 절연형 양방향 CLLC 공진형 컨버터)

  • Jung, Jee-Hoon;Kim, Ho-Sung;Ryu, Myung-Hyo;Kim, Jong-Hyun;Kim, Tae-Jin;Baek, Ju-Won
    • Proceedings of the KIPE Conference
    • /
    • 2012.07a
    • /
    • pp.379-380
    • /
    • 2012
  • A bidirectional full-bridge CLLC resonant converter using a digital control method is proposed for a LVDC power distribution system. This converter can operate under high power conversion efficiency since the CLLC resonant network has soft switching capability for primary switches and output rectifiers. In addition, the power conversion efficiency of any directions is exactly the same as each other because of the symmetric structure of the converter. Intelligent digital control methods are proposed to regulate output voltage under any power flow directions. A 5kW prototype converter was designed for a high-frequency galvanic isolation of 380V dc buses using a digital signal processor to verify the performance of the proposed topology and algorithms.

  • PDF

Zero-Current-Switching in Full-Bridge DC-DC Converters Based on Activity Auxiliary Circuit

  • Chu, Enhui;Lu, Ping;Xu, Chang;Bao, Jianqun
    • Journal of Power Electronics
    • /
    • v.19 no.2
    • /
    • pp.353-362
    • /
    • 2019
  • To address the problem of circulating current loss in the traditional zero-current switching (ZCS) full-bridge (FB) DC/DC converter, a ZCS FB DC/DC converter topology and modulation strategy is proposed in this paper. The strategy can achieve ZCS turn on and zero-voltage and zero-current switching (ZVZCS) turn off for the primary switches and realize ZVZCS turn on and zero-voltage switching (ZVS) turn off for the auxiliary switches. Moreover, its resonant circuit power is small. Compared with the traditional phase shift full-bridge converter, the new converter decreases circulating current loss and does not increase the current stress of the primary switches and the voltage stress of the rectifier diodes. The diodes turn off naturally when the current decreases to zero. Thus, neither reverse recovery current nor loss on diodes occurs. In this paper, we analyzed the operating principle, steady-state characteristics and soft-switching conditions and range of the converter in detail. A 740 V/1 kW, 100 kHz experimental prototype was established, verifying the effectiveness of the converter through experimental results.

A ZVS-CV Buck Converter using Thin-Film Inductor (박막 인덕터를 이용한 영전압 스위칭 Clamp Voltage Buck 컨버터에 관한 연구)

  • Kim, Young-Jae;Kim, Hee-Jun;Oh, Won-Seok
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.37 no.1
    • /
    • pp.56-63
    • /
    • 2000
  • Buck converter is considered to be one of the most widely used DC-DC converters due to its simple structure and high reliable performance. However, when it be combined with thin-film inductor, its own low inductance requires higher switching frequency in order to maintain optimum output ripple voltage and thus gives rise to extra switching losses. In view to overcoming such a technical inconvenience, soft switching fashion is suggested such as zero-voltage-switching of which an well known example is a Zero-Voltage-Switching clamp voltage(ZVS-CV) converter for which low inductance is imperatively required for ZVS operation. In order to support our suggestion, a 1W ZVS-CV buck converter is built by use of thin-film inductor, and then tested it. From the results of experiment and loss analysis, it is proved that the ZVS operation is well achieved and the measured efficiency of the converter is improved about 4% at full load comparing the conventional buck converter.

  • PDF

Boost AC-DC Converter of High Power Factor and High Efficiency (고역률 고효율 승압형 AC-DC 컨버터)

  • Kwak, Dong-Kurl;Kim, Choon-Sam;Park, Ha-Yong;Shim, Jae-Sun;Shim, Sang-Heung
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.19 no.7
    • /
    • pp.45-52
    • /
    • 2005
  • This paper is studied on boost AC-DC converter of high power factor and high efficiency for discontinuous current control. The converter operated in discontinuous current control eliminates the complicated circuit control requirement, and reduces a number of components. The input current waveform in proposed circuit is got to be a discontinuous sinusoidal form in proportion to magnitude of ac input voltage under the constant duty cycle switching. Therefore, the input power factor is nearly unity and the control circuit is simple. Also the switching devices in a proposed circuit are operated with soft switching by the partial resonant method. The result is that the switching loss is very low and the efficiency of system is high. The partial resonant circuit makes use of a inductor using step up and loss-less snubber capacitor. The circuit topology of the converter is simplified. Some simulative results on computer and experimental results are included to confirm the validity of the analytical results.

Analysis and Implementation of the Capacitive Idling SEPIC (용량성 아이들링 SEPIC의 분석 및 구현)

  • 최동훈;조경현;나희수
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.40 no.1
    • /
    • pp.39-44
    • /
    • 2003
  • As the portable electronic equipments are developed and popularized, the batteies are more important. To prolong life of the equipments, engineers demand to have batteries of high-power density and they are used to use Li-ion batteries popularly Li-ion batteries are better than conventional batteries, Ni-cd, about power density per volume and weight, but they have a fault that discharge voltage of them goes down. In order to maximize life of the Li-ion batterries, we have to use a converter which is suitable for the characteristic of Li-ion batteries. Therefore, capacitive idling SEPIC(Single Ended Primary Inductance Converter) that is derived from the SEPIC topology is proposed as a source of the Portable low-power applications. The converter has characteristics of buck-boost porformance. Besides, that makes it possible to increase the switching frequency by partial soft commutation of power switches through adding a diode and a switch. This paper is presented the characteristics, DC voltage conversion ratio, circuits of operation modes, of the converter and it is analized and implemented.

A Resonant-type Step-up DC/DC Converters with Piezoelectric Transducer (압전 트랜스듀서를 이용한 승압형 공진형 직류-직류 컨버터)

  • Park, Joung-Hu;Seo, Gab-Su;Cho, Bo-Hyung;Yi, Kyung-Pyo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.14 no.5
    • /
    • pp.343-354
    • /
    • 2009
  • In this paper, a magnetic-less dc-dc switching converter realizing an integrable power conversion system is described. Instead of magnetic devices, the inductive impedance range of piezoelectric transducers is utilized to store and resonate the energy for soft-switching. Piezoelectric devices have no windings and deliver the power by the electrodes, which lead to mass product through semiconductor-manufacturing process. This paper presents a resonant-type step-up dc-dc power converter employing a disk-type piezoelectric transducer, analyzing the operation principles and the frequency control characteristics. Also, a topology extension of the single stage converter into cascaded multi-stage is presented and analyzed with the operation principles and control characteristics. For verification of the analysis, a 10W output dc-dc power converter hardware was implemented. The hardware experiments shows a good frequency control and power efficiency greater than 96% in the single stage. A hardware prototype of the extended multi-stage one was also realized and tested. The results shows that the converter has the same frequency control performance and high efficiency such as 93%.