• 제목/요약/키워드: Soft switching technique

검색결과 94건 처리시간 0.027초

ZVT 기술을 이용한 soft switching DC-DC Boost 컨버터에 관한 연구 (A Study on Soft Switching PWM Boost Converter using ZVT Technique)

  • 김춘삼
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2000년도 전력전자학술대회 논문집
    • /
    • pp.141-144
    • /
    • 2000
  • Recently DC-DC converters significantly increase the total losses as rising switching frequency. Traditional soft switching technique for reducing switching losses even increase voltage/current stress of switch. In this paper Resonant circuit for soft switching is connected in parallel with power stage and only operates just before turn-on of the main operates just before turn-on of the main switch, Therefore This doesn't affect the total circuit operation. ZNT-PWM converter designed with 170-260V input 4--V 5A output and 100kHz switching frequency is tested respectively with 500W. 1kW, 1.5kW, and 2kW loads.

  • PDF

Controlled-Type ZVS Technique without Auxiliary Components for Micro-inverters

  • Zhang, Qian;Zhang, Dehua;Hu, Haibing;Shen, John;Batarseh, Issa
    • Journal of Power Electronics
    • /
    • 제13권6호
    • /
    • pp.919-927
    • /
    • 2013
  • This paper proposes a Boundary Current Mode (BCM) control scheme to realize soft switching on a conventional single phase full bridge DC/AC inverter. This technique with the advantages of no auxiliary components, low cost, high efficiency, and simple in control, is attractive for micro-inverter applications. The operation principle and characteristic waveforms of the proposed soft switching technique are analyzed in theory. A digital controller is provided based on that theory. To balance the requirements of efficiency, switching frequency, and inductor size, the design considerations are discussed in detail to guide in BCM inverter construction. A 150W prototype is built under these guidelines to implement the BCM control scheme. Simulation and experiment results demonstrate the feasibilities of the proposed soft switching technique.

Two-transistor 포워드 컨버터에서 소프트 스위칭 기법의 손실 분석 (Loss Analyses of Soft Switching Techniques for Two-transistor Forward Converter)

  • 김만고
    • 전력전자학회논문지
    • /
    • 제6권5호
    • /
    • pp.453-459
    • /
    • 2001
  • 본 논문에서는 Two-transistor 포워드 컨버터에서 사용 가능한 기존의 소프트 스위칭 기법과 새로운 소프트 스위칭 기법의 손실 분석을 수행한다. 두 트랜지스터에서 발생하는 스너버 전류에 의한 트랜지스터 손실과 내부 커패시터에 의한 턴-온 손실을 유도하고, 각각의 트랜지스터에서 발생하는 전체 손실을 계산한다. 손실 계산을 통해 기존의 소프트 스위칭 기법에서는 두 트랜지스터에서 발생하는 손실이 상이함을 보이고, 새로운 소프트 스위칭 기법에서는 손실이 적으면서도 두 트랜지스터에서의 손실이 고르게 발생함을 알 수 있다. 그리하여 제안된 소프트 스위칭 스너버를 사용하여 고른 열분포와 향상된 신뢰도를 얻을 수 있음을 보인다.

  • PDF

보조스위치를 이용한 매트릭스 컨버터(Matrix Converter)의 소프트스위칭 기법 (A Soft-Switching Technique of Matrix Converters using Auxiliary Switch)

  • 엄태욱;김윤호;김승모
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2002년도 전력전자학술대회 논문집
    • /
    • pp.519-524
    • /
    • 2002
  • This paper presents a soft-switching technique of single-stage power conversion Matrix Converter of AC-AC converters. Conventional hard-switching method is limited to operate at low switching frequency due to increased switching loss. In this paper, by additional auxiliary switch circuits, it is shown that the main switch of the matrix converter operate as a zero-voltage switches, and the auxiliary switch operate as a zero current switch. Finally, the soft-switching technique with auxiliary switches is compared with conventional hard-switching technique, and Is analyzed by simulation.

  • PDF

양방향 풀-브릿지 DC-DC 컨버터를 위한 새로운 소프트 스위칭 기법 (A New Soft Switching Technique for Bi-directional Power Flow, Full-bridge DC-DC Converter)

  • 송유진;박석인;정학근;한수빈;정봉만
    • 한국조명전기설비학회:학술대회논문집
    • /
    • 한국조명전기설비학회 2005년도 학술대회 논문집
    • /
    • pp.251-255
    • /
    • 2005
  • This paper proposes a new soft switching technique for a phase-shift controlled bi-directional DC-DC converter. The described converter employs a low profile high frequency transformer and two active full-bridge converters for bidirectional power flow capability. A new soft switching technique is proposed, which guarantees soft switching over wide range (no load to full load) without any additional circuit components. In the proposed switching scheme, the switch pairs in the diagonal position of the converter each are turned on/off simultaneously by the switching signals with a variable duty ratio depending on the phase shift amount, and the converter is operated without freewheeling interval.

  • PDF

단일전력단으로 구성된 역률 보상 AC/DC Full-Bridge Converter의 소프트 스위칭 기법에 대한 비교 연구 (A Comparative Study on Soft Switching Method of Single Stage AC/DC Full-Bridge Converter)

  • 이성룡;전칠환;정채규
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2001년도 전력전자학술대회 논문집
    • /
    • pp.694-697
    • /
    • 2001
  • A optimal soft switching technique for A/DC full bridge converter is proposed. variable soft switching single stage AC/DC full bridge converter with unit power factor are presented in this paper. Using soft switching, we can reduce a switching losses. As a result, achieving good power factor and achieving a good efficiency. We search a optimal soft switching technique in this paper and to verify the theoretical analysis of the presented AC/DC full bridge converter, a design example is given with its Pspice and Psim simulation and experimental results.

  • PDF

소프트 스윗치를 이용한 불연속 모드 3상 AC-DC 부스터 컨버터에 관한 연구 (A study on Three-Phase AC-DC Boost Converter using A Soft-Switching for discontinuous Mode)

  • 전중함;곽동걸;김천식;서기영;권순걸;이현우
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1995년도 하계학술대회 논문집 A
    • /
    • pp.188-190
    • /
    • 1995
  • This paper describes a soft switching using discontinuous inductor current. The soft switching snubber circuit provides ZCS and ZVS for main switch. For high power applications, the input ractifier is fed from a three-phase ac source. The Conventional switching method is hard switching technics, because of the device turn off is ocurred in maximum reactor current. In this time, switching losses are maximised by the hard switching. In generally, soft switching technique has been adjusted with the snubber condenser in order to compensates for this losses. So, it was compared hard switching with soft switching which has proposed in this paper for switching losses, distortion factor by the simulation.

  • PDF

Two-transistor 포워드 컨버터에서 소프트 스위칭 기법의 손실 계산

  • Kim Marn-Go
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2001년도 전력전자학술대회 논문집
    • /
    • pp.698-701
    • /
    • 2001
  • Loss analyses of two soft switching techniques for two-transistor forward converters are presented. The sums of snubber conduction and capacitive turn-on losses for two transistors are calculated to compare the losses of two techniques. While the conventional soft switching technique shows the loss difference between two transistors, proposed soft switching technique shows equal as well as lower loss in two transistors.

  • PDF

소프트 스위칭 기법을 이용한 ZVS-HB형 고주파 공진 DC-DC 컨버터의 설계 및 특성해석 (A Design and Characteristic Analysis of ZVS-Half Bridge type High-Frequency Resonant DC-DC Converter Using Soft-Switching Technique)

  • 오경섭;남승식;김경식;김동희;노채균
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제50권4호
    • /
    • pp.179-187
    • /
    • 2001
  • In recent years, the switching source devices have the advantage of small, light and high reliability with the high-frequency. But, high-frequency switching has disclosed disadvantage of result from stress and turn-on and turn-off peak losses at the switching instant. Accordingly, in this paper propose ZVS-HB type high-frequency resonant DC/DC converter using soft switching technique (Zero-Voltage-Switching, Zero-Current-Switching) with safety operating of circuit at diving on inductive zone, through the circuit design example using the capacitor $C_3,\;C_4$ with soft switching function and division characteristic of resonant Capacitor C, $C_1,\;C_2$, and, the characteristic analysis of circuit is generally described using normalized parameters. Also, this paper certified a rightfulness of characteristic analysis in comparison with a theoretical values and a experimental values obtain from experiment using MOSFET.

  • PDF

단일 보조 스위치를 이용한 새로운 ZVZCS PWM DC-DC 컨버터 (New ZVZCS PWM DC-DC Converters with One Auxiliary Swithch)

  • 류승희;이동윤;유상봉;현동석
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제49권3호
    • /
    • pp.188-194
    • /
    • 2000
  • This paper presents new Zero-Voltage-/Zero-Current-Switching (ZVZCS) PWM DC-DC converters. The proposed soft-switching technique achieves ZVS and ZCS simultaneously at both turn-on and turn-off of the main switch and diode by using only one auxiliary switch. Also, the proposed soft-switching technique is suitable for not only minority but also majority carrier semiconductor devices. The auxiliary circuit of the proposed topology is placed out the main power path and therefore, there are no voltage/current stresses on the main switch and diode. The operating principle of the proposed topology is illustrated by a detailed study with a boost converter as an example. Theoretical analysis, simulation and experimental results are presented to explain the proposed schemes.

  • PDF