• Title/Summary/Keyword: Soft sensor

Search Result 165, Processing Time 0.025 seconds

Design and development of fabric-type fitness band (직물형 피트니스 밴드 디자인 및 개발)

  • Jeong, Dawun;Lee, Sojung;Kwon, Chae-Ryung;Park, Ihwa;Heo, Seowon;Kim, Dong-Eun
    • The Research Journal of the Costume Culture
    • /
    • v.26 no.4
    • /
    • pp.632-648
    • /
    • 2018
  • This study aims to contribute to the development of sports wearables. It was conducted by a convergence team of professionals in the fashion industry, kinesiology and sports studies, and computer science and engineering. The purpose of the current study was to design and develop a fabric-type fitness band for a sensor to measure acceleration during jump rope exercises. Computer science and engineering professionals developed the Arduino board and sensor, kinesiology and sports studies provided the necessary exercise protocol, and the fashion industry professionals developed the band. First, a fitness band preference survey was completed by men and women between the ages of 20 and 50. Typical uses of the band included tracking exercise amount as measured by the number of steps taken and calories burned. Strap watch closure, a single color and achromatic color, and soft and smooth touch materials were preferred as band design. Second, two fabric-type fitness bands were designed and developed. Design 1 had a 3-dimensional pocket for the sensor, bright blue color, and stretch binding around the edges and for a loop. Design 2 had a flat pocket for the sensor, achromatic color, mesh binding around the edges and two metal loops. Both designs had Velcro as a closure. Third, wear testing of both bands with the sensor were conducted of 15 women in their 20s. They wore the bands during jump rope exercises. Both bands generally satisfied the participants. The Design 2 band was slightly more satisfying than the Design 1 band.

A Study on the Development of In-Socket Pressure Change Measurement Sensor for Estimation Locomotion Intention of Intelligent Prosthetic leg User (지능형 대퇴의족 사용자의 보행 의도 추정을 위한 소켓 내 압력 변화 측정 센서 개발에 관한 연구)

  • Park, Na-Yeon;Eom, Su-Hong;Lee, Eung-Hyuk
    • Journal of IKEEE
    • /
    • v.26 no.2
    • /
    • pp.249-256
    • /
    • 2022
  • The prosthetic leg is a device that performs walking instead of a amputated lower limb, and require a change in locomotion mode by providing the user's intention to respond to a discontinuous locomotion environment. Research has been conducted to detect the users' intentions through biomechanical features inside the socket that directly contacts the cut site in demand for natural locomotion mode changes without external control equipment. However, there is still a need for a sensor system that is suitable for the internal environment of the main body and socket of the cut site. Accordingly, this paper proposed a film-type sensor system that is suitable for the main body characteristics of the cut site, is not affected by the temperature and humidity conditions inside the socket, and is easy to manufacture in various sizes. The proposed sensor is manufactured base on Velostat film and takes into account the pressure measurement characteristics that vary with size. Through the experiment, the change in the internal pressure of the socket due to the intentional posture performance of the wearer was measured, and the possibility of detecting the intention to change the locomotion mode was confirmed.

Real-time Sitting Posture Monitoring System using Pressure Sensor (압력센서를 이용한 실시간 앉은 자세 모니터링 시스템)

  • Jung, Hwa-Young;Ji, Jun-Keun;Min, Se Dong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.6
    • /
    • pp.940-947
    • /
    • 2015
  • A Sitting posture is a very important issue for moderns who is mostly sedentary. Also, a wrong sitting posture causes back-pain and spinal disease. Many researchers have been proposed numerous approaches that classifying and monitoring for a sitting posture. In this paper, we proposed a real-time sitting posture monitoring system that was developed to measure pressure distribution in the human body. The proposed system consists of a pressure sensing module (six pressure sensors), data acquisition and processing module, a communication module and a display module for an individual sitting posture monitoring. The developed monitoring system can classify into five sitting postures, such as a correct sitting, sitting on forward inclination, leaning back sitting, sitting with a right leg crossed and a left leg crossed. In addition, when a user deviates from the correct posture, an alarm function is activated. We selected two kinds of chairs, one is rigid material and fixed form, the other one is a soft material and can adjust the height of a chair. In the experiments, we observed appearance changes for subjects in consequence of a comparison between before the correction of posture and after the correction of posture when using the proposed system. The data from twenty four subjects has been classified with a proposed classifier, achieving an average accuracy of 83.85%, 94.56% when the rigid chair and the soft chair, respectively.

Soft Sensor Design Using Image Analysis and its Industrial Applications Part 2. Automatic Quality Classification of Engineered Stone Countertops (화상분석을 이용한 소프트 센서의 설계와 산업응용사례 2. 인조대리석의 품질 자동 분류)

  • Ryu, Jun-Hyung;Liu, J. Jay
    • Korean Chemical Engineering Research
    • /
    • v.48 no.4
    • /
    • pp.483-489
    • /
    • 2010
  • An image analysis-based soft sensor is designed and applied to automatic quality classification of product appearance with color-textural characteristics. In this work, multiresolutional multivariate image analysis (MR-MIA) is used in order to analyze product images with color as well as texture. Fisher's discriminant analysis (FDA) is also used as a supervised learning method for automatic classification. The use of FDA, one of latent variable methods, enables us not only to classify products appearance into distinct classes, but also to numerically and consistently estimate product appearance with continuous variations and to analyze characteristics of appearance. This approach is successfully applied to automatic quality classification of intermediate and final products in industrial manufacturing of engineered stone countertops.

Research on the Convergence of CCTV Video Information with Disaster Recognition and Real-time Crisis Response System (CCTV 영상 정보와 재난재해 인식 및 실시간 위기 대응 시스템의 융합에 관한 연구)

  • Kim, Ki-Bong;Geum, Gi-Moon;Jang, Chang-Bok
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.3
    • /
    • pp.15-22
    • /
    • 2017
  • People generally believe that disaster forecast and warning systems and response systems are well established in the age of cutting edge technology. As a matter of fact, reliable systems to respond to disasters are not properly equipped, as we witnessed the Sewol ferry disaster in 2014. The existing forecast and warning systems are based on sensor information with low efficiency, and image information is only operated by monitoring staff manually. In addition, the interconnection between a warning system and a response system in order to decide how to cope with the recognized disaster is very insufficient. This paper introduces the CCTV based disaster recognition and real time crisis response system composed of the CCTV image recognition engine and the crisis response technique. This system has brought the possibility to overcome the limitations of existing sensor based forecast and warning systems, and to resolve the problems in the absence of monitoring staff when responding to crisis.

Large-strain Soft Sensors Using Elastomers Blended with Exfoliated/Fragmented Graphite Particles (탄성중합체와 박리 후 파쇄된 흑연입자 복합재를 이용한 대변형률 연성 센서)

  • Park, Sungmin;Nam, Gyungmok;Kim, Jonghun;Yoon, Sang-Hee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.9
    • /
    • pp.815-820
    • /
    • 2016
  • An elastic polymer (e.g., PDMS) blended with EFG particles is a promising conductive composite for fabricating soft sensors that can detect an object's deformation up to or more than 50%. Here, we develop large-strain, sprayable soft sensors using a mixture of PDMS and EFG particles, which are used as a host elastomer and electrically conductive particles, respectively. A solution for a conductive composite mixture is prepared by the microwave-assisted graphite exfoliation, followed by ultrasonication-induced fragmentation of the exfoliated graphite and ultrasonic blending of PDMS and EFG. Using the prepared solutions for composite and pure PDMS, 1-, 2-, and 3-axis soft sensors are fabricated by airbrush stencil technique where composite mixture and pure PDMS are materials for sensing and insulating layers, respectively. We characterize the soft strain sensors after investigating the effect of PDMS/EFG wt% on mechanical compliance and electrical conductance of the conductive composite.

A Study on the Standard-interfaced Smart Farm Supporting Non-Standard Sensor and Actuator Nodes (비표준 센서 및 구동기 노드를 지원하는 표준사양 기반 스마트팜 연구)

  • Bang, Dae Wook
    • Journal of Information Technology Services
    • /
    • v.19 no.3
    • /
    • pp.139-149
    • /
    • 2020
  • There are now many different commercial weather sensors suitable for smart farms, and various smart farm devices are being developed and distributed by companies participating in the government-led smart farm expansion project. However, most do not comply with standard specifications and are therefore limited to use in smart farms. This paper proposed the connecting structure of operating non-standard node devices in smart farms following standard specifications supporting smart greenhouse. This connecting structure was proposed as both a virtual node module method and a virtual node wrapper method. In addition, the SoftFarm2.0 system was experimentally operated to analyze the performance of the implementation of the two methods. SoftFarm2.0 system complies with the standard specifications and supports non-standard smart farm devices. According to the analysis results, both methods do not significantly affect performance in the operation of the smart farm. Therefore, it would be good to select and implement the method suitable for each non-standard smart farm device considering environmental constraints such as power, space, distance of communication between the gateway and the node of the smart farm, and software openness. This will greatly contribute to the spread of smart farms by maximizing deployment cost savings.

A Study on the Characteristics of Stick-slip Friction in CMP (CMP에서의 스틱-슬립 마찰특성에 관한 연구)

  • Lee, Hyunseop;Park, Boumyoung;Seo, Heondeok;Park, Kihyun;Jeong, Haedo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.4
    • /
    • pp.313-320
    • /
    • 2005
  • Stick-slip friction is one of the material removal mechanisms in tribology. It occurs when the static friction force is larger than the dynamic friction force, and make the friction curve fluctuated. In the friction monitoring of chemical mechanical polishing(CMP), the friction force also vibrates just as stick-slip friction. In this paper, an attempt to show the similarity between stick-slip friction and the friction of CMP was conducted. The prepared hard pa(IC1000/Suba400 stacked/sup TM/) and soft pad(Suba400/sup TM/) were tested with SiO₂ slurry. The friction force was measured by piezoelectric sensor. According to this experiment, it was shown that as the head and table velocity became faster, the stick-slip time shortened because of the change of real contact area. And, the gradient of stick-slip period as a function of head and table speed in soft pad was more precipitous than that of hard one. From these results, it seems that the fluctuating friction force in CMP is stick-slip friction caused by viscoelastic behavior of the pad and the change of real contact area.

Allosteric Probe-Based Colorimetric Assay for Direct Identification and Sensitive Analysis of Methicillin Resistance of Staphylococcus aureus

  • Juan Chu;Xiaoqin Zhao
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.3
    • /
    • pp.681-688
    • /
    • 2024
  • The accurate and rapid detection of methicillin-resistance of Staphylococcus aureus (SA) holds significant clinical importance. However, the methicillin-resistance detection strategies commonly require complicated cell lysis and gene extraction. Herein, we devised a novel colorimetric approach for the sensitive and accurate identification of methicillin-resistance of SA by combining allosteric probe-based target recognition with self-primer elongation-based target recycling. The PBP2a aptamer in the allosteric probe successfully identified the target MRSA, leading to the initiation of self-primer elongation based-cascade signal amplification. The peroxidase-like hemin/G-quadruplex undergo an isothermal autonomous process that effectively catalyzes the oxidation of ABTS2- and produces a distinct blue color, enabling the visual identification of MRSA at low concentrations. The method offers a shorter duration for bacteria cultivation compared to traditional susceptibility testing methods, as well as simplified manual procedures for gene analysis. The overall amplification time for this test is 60 min, and it has a detection limit of 3 CFU/ml. In addition, the approach has exceptional selectivity and reproducibility, demonstrating commendable performance when tested with real samples. Due to its advantages, this colorimetric assay exhibits considerable potential for integration into a sensor kit, thereby offering a viable and convenient alternative for the prompt and on-site detection of MRSA in patients with skin and soft tissue infections.

Sensor Applications of Microporous Conjugated Polymers

  • Gwak, Gi-Seop
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.125-125
    • /
    • 2014
  • In 1991, Prof. Toshio Masuda of Kyoto University for the first time synthesized a representative of diphenylacetylene polymer derivatives, poly[1-phenyl-2-(p-trimethylsilyl)phenylacetylene] [PTMSDPA]. This polymer is highly soluble nevertheless a ultra-high molecular weight (Mw) of > $1.0{\times}10^6$ which showed excellent chemical, physical, mechanical properties [1]. As one of the most interesting features of PTMSDPA, Prof. Katsumi Yoshino of Osaka Univ. reported that this polymer emits an intense fluorescence (FL) in a visible region because of the effective exciton confinement within the resonant structure between the polyene pi-conjugated chain and side phenyl full-aromatic bulky groups [2]. Very recently, Prof. Ben-Zhong Tang of Hong-Kong Institute of Science and Technology clarified the idea that the FL emission of disubstituted acetylene polymer derivatives originates from intramolecular excimer due to the face-to-face stacking of the side phenyl groups [3]. Thus, to know what influence to intramolecular excimer emission in the film as well as to further understand how the intramolecular excimer forms in the film became more crucial in order to further precisely design the optimized molecular structure for highly emissive, substituted acetylene polymers in the solid state. In recent studies, we have focused our interests on the origin of the FL emission in order to expand our knowledge to developments of novel sensor applications. It was found that the intramolecular phenyl-pheyl stack structure of PTMSDPA in film was variable in response to various external chemical stimuli. Using PTMSDPA and its derivatives, we have developed various potential applications such as latent fingerprint identification, viscosity sensor, chemical-responsive actuator, gum-like soft conjugated polymer, and bioimaging. The details will be presented in the 49th KVS Symposium held in Pyong Chang city.

  • PDF