• Title/Summary/Keyword: Soft rot resistance

Search Result 38, Processing Time 0.02 seconds

Overexpression of cysteine protease in transgenic Brassica rapa enhances resistance to bacterial soft rot and up-regulate the expression of various stress-regulated genes

  • Jung, Yu-Jin;Kang, Kwon-Kyoo
    • Journal of Plant Biotechnology
    • /
    • v.37 no.3
    • /
    • pp.327-336
    • /
    • 2010
  • Cysteine proteases have been known as a critical factor in plant defense mechanisms in pineapple, papaya, or wild fig. Papain or ficin is one kind of cysteine proteases that shows toxic effects to herbivorous insects and pathogenic bacteria. However, resistance to bacterial soft rot of plants genetically engineered with cysteine protease has been little examined thus far. We cloned a cysteine protease cDNA from Ananas comosus and introduced the gene into Chinese cabbage (Brassica rapa) under the control of the cauliflower mosaic virus 35S promoter. The transgene was stably integrated and actively transcribed in transgenic plants. In comparisons with wild-type plants, the $T_2$ and $T_3$ transgenic plants exhibited a significant increase in endo-protease activity in leaves and enhanced resistance to bacterial soft rot. A cDNA microarray analysis revealed that several genes were more abundantly transcribed in the transgenic than in the wild type. These genes encode a glyoxal oxidase, PR-1 protein, PDF1, protein kinase, LTP protein, UBA protein and protease inhibitor. These results suggest an important role for cysteine protease as a signaling regulator in biotic stress signaling pathways, leading to the build-up of defense mechanism to pathogenic bacteria in plants.

Antibiotic Resistance of Pectobacterium Korean Strains Susceptible to the Bacteriophage phiPccP-1

  • Vu, Nguyen Trung;Roh, Eunjung;Thi, Thuong Nguyen;Oh, Chang Sik
    • Research in Plant Disease
    • /
    • v.28 no.3
    • /
    • pp.166-171
    • /
    • 2022
  • Commercial products with antibiotics like streptomycin as active ingredients have been used to control soft rot disease caused by Pectobacterium species for a long time. In this study, antibiotic resistance of twenty-seven Korean strains of Pectobacterium species including P. carotovorum, P. odoriferum, P. brasiliense, and P. parmenteri, which were previously shown to be susceptible to the bacteriophage phiPccP-1 was surveyed using a disk diffusion assay. While all strains were highly susceptible to ampicillin, kanamycin, chloramphenicol, tetracycline, and rifampicin, some strains showed weak susceptibility to 300 ㎍/ml of streptomycin. Furthermore, some of them are partially or completely resistant to commercial pesticides-Buramycinand streptomycin at the concentration of 250 ㎍/ml that is recommended by the manufacturer for streptomycin-based pesticides. These results indicate the presence of streptomycin-resistant Pectobacterium strains in South Korea, and the development of antibiotic alternatives to control soft rot is needed.

Agronomic characteristics and field resistance to bacterial soft rot of transgenic potato overexpressing the soybean calmodulin 4 gene (SCaM4) (SCaM4 과발현 형질전환 감자의 농업적 특성 및 감자 무름병 저항성 평가)

  • Sohn, Hwangbae;Cho, Kwangsoo;Cho, Jihong;Gwon, Ohgeun;Cheon, Chunggi;Choi, Jigyeong;Chung, Woosik;Lee, Shin Woo
    • Journal of Plant Biotechnology
    • /
    • v.39 no.4
    • /
    • pp.295-299
    • /
    • 2012
  • We performed in vitro assay and field trials to assess levels of changes in intrinsic properties and resistance against soft rot of the potato cv. Dejima upon the introduction of a soybean calmodulin 4 gene (SCaM4). Field trials with four lines overexpressing SCaM4 gene were conducted over two seasons, and harvested tubers were evaluated in bioassay for resistance to Pectobacterium carotovorum ssp. carotovorum. The SCaM4 transgenic potato lines inoculated with $10^8$ CFU/ml of P. carotovorum ssp. carotovorum showed enhanced resistance compared to control. Among the SCaM4 transgenic lines, the transgenic line SCaM4-4 exhibited the highest tolerance to soft rot in vitro assays, so did in field trials. In the field trial, the soft rot resistance of SCaM4-4 line was more than 5 times higher compared to that of control cultivar, Dejima. The major agronomic characteristics of the SCaM4 transgenic lines were not different from those of the nontransgenic 'Dejima'. The result demonstrated that the transformation of a calmodulin 4 gene was a successful strategy in development of potato cultivar enhanced to soft rot.

Differential Resistance of Radish Cultivars against Bacterial Soft Rot Caused by Pectobacterium carotovorum subsp. carotovorum

  • Soo Min Lee;Jin Ju Lee;Hun Kim;Gyung Ja Choi
    • The Plant Pathology Journal
    • /
    • v.40 no.2
    • /
    • pp.151-159
    • /
    • 2024
  • Bacterial soft rot caused by Pectobacterium carotovorum subsp. carotovorum (Pcc) is one of the most severe diseases in radish cultivation. To control this plant disease, the most effective method has been known to cultivate resistant cultivars. Previously, we developed an efficient bioassay method for investigating resistance levels with 21 resistant and moderately resistant cultivars of radish against a strain Pcc KACC 10421. In this study, our research expanded to investigate the resistance of radish cultivars against six Pcc strains, KACC 10225, KACC 10421, ATCC 12312, ATCC 15713, LY34, and ECC 301365. To this end, the virulence of the six Pcc strains was determined based on the development of bacterial soft rot in seedlings of four susceptible radish cultivars. The results showed that the Pcc strains exhibited different virulence in the susceptible cultivars. To explore the race differentiation of Pcc strains corresponding to the resistance in radish cultivars, we investigated the occurrence of bacterial soft rot caused by the six Pcc strains on the 21 resistant and moderate resistant cultivars. Our results showed that the average values of the area under the disease progress curve were positively correlated with the virulence of the strains and the number of resistant cultivars decreased as the virulence of Pcc strains increased. Taken together, our results suggest that the resistance to Pcc of the radish cultivars commercialized in Korea is more likely affected by the virulence of Pcc strains rather than by race differentiation of Pcc.

Evaluation of Bioassay Methods to Assess Bacterial Soft Rot Resistance in Radish Cultivars (무 품종의 세균성 무름병 저항성 생물검정법 평가)

  • Afroz, Tania;Hur, Onsook;Ro, Nayoung;Lee, Jae-eun;Hwang, Aejin;Kim, Bichsaem;Assefa, Awraris Derbie;Rhee, Ju Hee;Sung, Jung Sook;Lee, Ho-sun;Hahn, Bum-Soo
    • Journal of Life Science
    • /
    • v.31 no.7
    • /
    • pp.609-616
    • /
    • 2021
  • Bacterial soft rot, caused by Pectobacterium carotovorum subsp. carotovorum (Pcc), is one of the destructive diseases of radish (Raphanus sativus) in Asian countries. The objective of this study was to establish an efficient bioassay method for the evaluation of bacterial soft rot resistance in commercial radish cultivars. First, an efficient bioassay method for examining resistance to bacterial soft rot in commercial radish cultivars was investigated. Six commercial radish cultivars were tested under various conditions: two temperatures (25℃ and 30℃), three inoculations methods (drenching, spraying, and root dipping), and two growth stages (two- and four-leaf stages). The results suggested that spraying with 1×106 cfu/ml of bacterial inoculums during the four-leaf stage and incubating at 30℃ could be the most efficient screening method for bacterial soft rot resistance in commercial radish cultivars. Second, we investigated the degree of resistance of 41 commercial radish cultivars to five Pcc isolates, namely KACC 10225, KACC 10343, KACC 10421, KACC 10458, and KACC 13953. KACC 10421 had the strongest susceptibility in terms of moderately resistant disease response to bacterial soft rot. Out of the 41 radish cultivars, 13 were moderately resistant to this pathogen, whereas 28 were susceptible. The moderately resistant radish cultivars in this investigation could serve as resistance donors in the breeding of soft rot resistance or could be used to determine varietal improvement for direct use by breeders, scientists, farmers, researchers, and end customers.

Development of an Efficient Bioassay Method for Testing Resistance to Bacterial Soft Rot of Chinese Cabbage (효율적인 배추 무름병 저항성 검정법 개발)

  • Lee, Soo Min;Choi, Yong Ho;Kim, Hun;Kim, Heung Tae;Choi, Gyung Ja
    • Research in Plant Disease
    • /
    • v.26 no.3
    • /
    • pp.159-169
    • /
    • 2020
  • Pectobacterium carotovorum subsp. carotovorum (Pcc) causes bacterial soft rot on a wide range of crops worldwide, especially in countries with warm and humid climates. This study was conducted to establish an efficient screening method for resistant cultivars of Chinese cabbage to bacterial soft rot. Resistance degrees of 65 commercial Chinese cabbage cultivars to the Pcc KACC 10225 isolate were investigated. For further study, three Chinse cabbage cultivars (Taebong, Hadaejangkun, CR Alchan) showing different level of resistance to the bacterium were selected. The development of bacterial soft rot on the cultivars was tested according to several conditions such as growth stage of Chinse cabbage seedling, inoculum concentration, and incubation temperature after inoculation. On the basis of the results, we suggest that an efficient screening method for resistant Chinses cabbage to Pcc is to inoculate twenty one-day-old seedlings with a bacterial suspension of Pcc at a concentration of 1×107 cfu/ml, and to incubate the plants in a dew chamber at 25℃ for 24 hr and then to cultivate in a growth room at 25℃ and 80% relative humidity with 12-hr light per day.

Paromomycin Derived from Streptomyces sp. AG-P 1441 Induces Resistance against Two Major Pathogens of Chili Pepper

  • Balaraju, Kotnala;Kim, Chang-Jin;Park, Dong-Jin;Nam, Ki-Woong;Zhang, Kecheng;Sang, Mee Kyung;Park, Kyungseok
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.9
    • /
    • pp.1542-1550
    • /
    • 2016
  • This is the first report that paromomycin, an antibiotic derived from Streptomyces sp. AG-P 1441 (AG-P 1441), controlled Phytophthora blight and soft rot diseases caused by Phytophthora capsici and Pectobacterium carotovorum, respectively, in chili pepper (Capsicum annum L.). Chili pepper plants treated with paromomycin by foliar spray or soil drenching 7 days prior to inoculation with P. capsici zoospores showed significant (p < 0.05) reduction in disease severity (%) when compared with untreated control plants. The disease severity of Phytophthora blight was recorded as 8% and 50% for foliar spray and soil drench, respectively, at 1.0 ppm of paromomycin, compared with untreated control, where disease severity was 83% and 100% by foliar spray and soil drench, respectively. A greater reduction of soft rot lesion areas per leaf disk was observed in treated plants using paromomycin (1.0 μg/ml) by infiltration or soil drench in comparison with untreated control plants. Paromomycin treatment did not negatively affect the growth of chili pepper. Furthermore, the treatment slightly promoted growth; this growth was supported by increased chlorophyll content in paromomycin-treated chili pepper plants. Additionally, paromomycin likely induced resistance as confirmed by the expression of pathogenesis-related (PR) genes: PR-1, β-1,3-glucanase, chitinase, PR-4, peroxidase, and PR-10, which enhanced plant defense against P. capsici in chili pepper. This finding indicates that AG-P 1441 plays a role in pathogen resistance upon the activation of defense genes, by secretion of the plant resistance elicitor, paromomycin.

AtCBP63, a Arabidopsis Calmodulin-binding Protein 63, Enhances Disease Resistance Against Soft Rot Disease in Potato (애기장대 칼모듈린 결합 단백질 AtCBP63을 발현시킨 형질전환 감자의 무름병 저항성 증가)

  • Chun, Hyun-Jin;Park, Hyeong-Cheol;Goo, Young-Min;Kim, Tae-Won;Cho, Kwang-Soo;Cho, Hyeon-Seol;Yun, Dae-Jin;Chung, Woo-Sik;Lee, Shin-Woo
    • Journal of Plant Biotechnology
    • /
    • v.38 no.1
    • /
    • pp.62-68
    • /
    • 2011
  • Calmodulin (CaM), a $Ca^{2+}$ binding protein in eukaryotes, mediates cellular $Ca^{2+}$ signals in response to a variety of biotic and abiotic external stimuli. The $Ca^{2+}$-bound CaM transduces signals by modulating the activities of numerous CaM-binding proteins. As a CaM binding protein, AtCBP63 ($\b{A}$rabidopsis thaliana $\b{C}$aM-binding protein $\underline{63}$ kD) has been known to be positively involved in plant defense signaling pathway. To investigate the pathogen resistance function of AtCBP63 in potato, we constructed transgenic potato (Solanum tuberosum L.) plants constitutively overexpressing AtCBP63 under the control of cauliflower mosaic virus (CaMV) 35S promoter. The overexpression of the AtCBP63 in potato plants resulted in the high level induction of pathogenesis-related (PR) genes such as PR-2, PR-3 and PR-5. In addition, the AtCBP63 transgenic potato showed significantly enhanced resistance against a pathogen causing bacterial soft rot, Erwinia carotovora ssp. Carotovora (ECC). These results suggest that a CaM binding protein from Arabidopsis, AtCBP63, plays a positive role in pathogen resistance in potato.

Determinants of Plant Growth-promoting Ochrobactrum lupini KUDC1013 Involved in Induction of Systemic Resistance against Pectobacterium carotovorum subsp. carotovorum in Tobacco Leaves

  • Sumayo, Marilyn;Hahm, Mi-Seon;Ghim, Sa-Youl
    • The Plant Pathology Journal
    • /
    • v.29 no.2
    • /
    • pp.174-181
    • /
    • 2013
  • The plant growth-promoting rhizobacterium Ochrobactrum lupini KUDC1013 elicited induced systemic resistance (ISR) in tobacco against soft rot disease caused by Pectobacterium carotovorum subsp. carotovorum. We investigated of its factors involved in ISR elicitation. To characterize the ISR determinants, KUDC1013 cell suspension, heat-treated cells, supernatant from a culture medium, crude bacterial lipopolysaccharide (LPS) and flagella were tested for their ISR activities. Both LPS and flagella from KUDC1013 were effective in ISR elicitation. Crude cell free supernatant elicited ISR and factors with the highest ISR activity were retained in the n-butanol fraction. Analysis of the ISR-active fraction revealed the metabolites, phenylacetic acid (PAA), 1-hexadecene and linoleic acid (LA), as elicitors of ISR. Treatment of tobacco with these compounds significantly decreased the soft rot disease symptoms. This is the first report on the ISR determinants by plant growth-promoting rhizobacteria (PGPR) KUDC1013 and identifying PAA, 1-hexadecene and LA as ISR-related compounds. This study shows that KUDC1013 has a great potential as biological control agent because of its multiple factors involved in induction of systemic resistance against phytopathogens.