• Title/Summary/Keyword: Soft marine clay

Search Result 132, Processing Time 0.019 seconds

Geotechnical engineering behavior of biopolymer-treated soft marine soil

  • Kwon, Yeong-Man;Chang, Ilhan;Lee, Minhyeong;Cho, Gye-Chun
    • Geomechanics and Engineering
    • /
    • v.17 no.5
    • /
    • pp.453-464
    • /
    • 2019
  • Soft marine soil has high fine-grained soil content and in-situ water content. Thus, it has low shear strength and bearing capacity and is susceptible to a large settlement, which leads to difficulties with coastal infrastructure construction. Therefore, strength improvement and settlement control are essential considerations for construction on soft marine soil deposits. Biopolymers show their potential for improving soil stability, which can reduce the environmental drawbacks of conventional soil treatment. This study used two biopolymers, an anionic xanthan gum biopolymer and a cationic ${\varepsilon}-polylysine$ biopolymer, as representatives to enhance the geotechnical engineering properties of soft marine soil. Effects of the biopolymers on marine soil were analyzed through a series of experiments considering the Atterberg limits, shear strength at a constant water content, compressive strength in a dry condition, laboratory consolidation, and sedimentation. Xanthan gum treatment affects the Atterberg limits, shear strength, and compressive strength by interparticle bonding and the formation of a viscous hydrogel. However, xanthan gum delays the consolidation procedure and increases the compressibility of soils. While ${\varepsilon}-polylysine$ treatment does not affect compressive strength, it shows potential for coagulating soil particles in a suspension state. ${\varepsilon}-Polylysine$ forms bridges between soil particles, showing an increase in settling velocity and final sediment density. The results of this study show various potential applications of biopolymers. Xanthan gum biopolymer was identified as a soil strengthening material, while ${\varepsilon}-polylysine$ biopolymer can be applied as a soil-coagulating material.

The Numerical analysis of Top-Base Foundation in Siwha Marine Clay (시화 해성점토 지반에서의 팽이기초의 수치해석연구)

  • Kim, Hyun-Soo;Kim, Hak-Moon;Kim, Chan-Kook
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.1155-1165
    • /
    • 2008
  • Full scale size model tests of the top-base foundation was performed in siwha marine clay and the site measurement results were compared with the analytical results from finite different programs, FLAC-2D to investigate the behavior of top-base foundation. The stress distribution obtained from the numerical analysis for the various types of foundation were compared and analysed during the application of allowable load as well as yield load. It was found that the top-base foundation prevents the lateral deformation of soft ground and stress dispersion effect to reduce the surface settlement, and that the foundation creates uniform stress distribution around it, therefore increasing bearing capacity.

  • PDF

Experimental study on characteristics of sedimentation and consolidation for dredged clay in the west coastal of Korea (국내 서해안 준설토의 침강압밀특성에 관한 실험 연구)

  • Jun, Sang-Hyun;Yoo, Nam-Jae
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.1190-1197
    • /
    • 2009
  • Design parameters related to Yano's method(1984, 1985), one of experimental approaches having been used widely in Korea to estimate sedimentation and consolidation of dredged and reclaimed ground, were analyzed and their propriety were reassessed in this paper. Data analyses were performed on the basis of the settling test results using samples from the west coastal area of Korea. From analysis of results, for specific characteristics of these dredged and reclaimed marine soft clays, co-relations of initial water content - coefficient of sedimentation/ consolidation - initial setting velocity were evaluated. Relation between height of soil solid and surface height of slurry at the stages of initiation and termination of consolidation was also assessed. Finally ranges and average values of these design parameters were evaluated and typical empirical equations between these design parameters were also proposed.

  • PDF

Acoustic and Elastic Properties of the Southeastern Yellow Sea Mud, Korea

  • Kim, Gil-Young
    • The Journal of the Acoustical Society of Korea
    • /
    • v.25 no.2E
    • /
    • pp.49-55
    • /
    • 2006
  • Compressional wave velocity (Vp), shear wave velocity (Vs), elastic and physical properties, and electrical resistivity for two core sediments obtained from Southeastern Yellow Sea Mud (SEYSM) were measured and computed. The sediments consist of homogeneous mud (mostly silt and clay) with shells and shell fragments. As a result, the mean grain size is uniform ($7.5-8.5{\Phi}$ throughout the core sediments. However, physical properties such as wet bulk density and porosity show slightly increasing and decreasing patterns with depth, compared to the mean grain size. The compressional (about 1475 m/s in average) and shear wave (about 60 m/s in average) velocities with depth accurately reflect the pattern of wet bulk density and porosity. Electrical resistivity is more closely correlated with compressional wave velocity than physical properties. The computed Vp/Vs and Poisson's ratios are relatively higher (more than 10) and lower (approximately 0.002) than Hamilton's (1979) data, respectively, suggesting the typical characteristics of soft and fully water-saturated marine sediments. Thus, the Vp/Vs ratio in soft and unconsolidated sediments is not likely sufficient to examine lithology and sediment properties. Relationships between the elastic constant and physical properties are correlated well. The elastic constants (Poisson's ratio, bulk modulus, shear modulus) given in this paper can be used to characterize soft marine sediments saturated with seawater.

Centrifuge Model Experiments and Numerical Analyses of the Behavior of Excavated Marine Clay Slope (해성점토 굴착사면의 거동에 관한 원심모형실험 및 수치해석)

  • Park, Byung-Soo
    • Journal of Ocean Engineering and Technology
    • /
    • v.20 no.5 s.72
    • /
    • pp.49-56
    • /
    • 2006
  • In this thesis, centrifuge model experiments and numerical analyses were carried out to investigate the behavior of an excavated slope in soft clay ground. Centrifuge model tests were performed with various slopes for the excavated ground, such as 1:1.5 and 1:2. Pore pressuresthe model ground were measured to find their effects on the stability of the excavated slope. These experiments showed that the model with 1:2.5 maintained its stability within a short period of time and failed gradually. Therefore, anexcavated slope of soft soil with this slope might maintain stable conditions within a certain time. The mode1 with a 1:3 slope was observed to maintain a very stable condition, showing insignificant deformation in the ground after being excavated. Numerical analyses with PLAXIS, a commerciallyavailable software implemented with the finite element numerical technique, were performed to find the pore pressure distribution within the ground mass and the deformation of the soil. From the results of numerical analysis, a negative pore pressure was developed after the excavation and thus the stability of the slope was maintained. The safety factor for slope failure was found to decrease with time because of the dissipation of negative pore pressure with time.

Earth Retaining Structure Using a Row of piles during Shallow Excavation in Soft Clay (연약점성토지반의 얕은 굴착시 줄말뚝을 이용한 흙막이공)

  • 홍원표;윤종민;송영식
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.1
    • /
    • pp.191-201
    • /
    • 2000
  • In this study, the earth retaining structure using a row of piles considering plastic flow of the ground is suggested for shallow excavation works instead of conventional anchored sheet-pile wall method in the marine clays with high groundwater level. The behavior of the earth retaining structure using a row of piles is precisely observed during excavation by inclinometer and piezometer installed in opposite to the excavation side. As a result of field measurement, it was found that the behaviors of the piles and the soil were influenced mainly by slope of excavation face, interval ratio of piles, fixity condition of pile head, and stability number, etc. The earth retaining structure using a row of piles is ascertained for workability, stability, and economical construction on the soft ground having no adjacent structures.

  • PDF

Transport and Removal of Organic Substances in Soils by Electroosmosis (전기삼투기법에 의한 토양내 유기오염물질의 이동 및 제거)

  • ;Gilliane C. Sills
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 1998.11a
    • /
    • pp.48-51
    • /
    • 1998
  • This paper presents the transport and removal of organic substances from the contaminated soft soils and sludges such as marine dredging waste, marine sediments, mine tailing waste, and sewage sludge by electroosmosis. A series of laboratory experiments including variable conditions such as contamination levels, solid contents, and applied voltage rates were peformed with the contaminated soft clay specimen mixed with organic substance. Investigated are specimen density, dewatering rate, outflow rate, and outflow concentration. The test results showed that organic substances in the soils were removed by applied voltages. The results indicated that this process can be used efficiently to clean up the contaminated soil.

  • PDF

Application of Prefabricated Horizontal Drains to Marine Clayey Soils (해안상의 토목섬유 수평배수재의 적용)

    • Journal of Korean Port Research
    • /
    • v.12 no.2
    • /
    • pp.329-336
    • /
    • 1998
  • Sandmats are used to dissipate trapped water rapidly from the embankment built on marine soft ground. At present, however, it becomes difficult to obtain qualified sands since natural resources such as river sand are to exhausted. Also, low permeability of sand may cause low degree of consolidation and instability of embankment. In this study, design and construction methods was discussed. Drainage capacities of prefabricated horizontal drains which were installed in highway construction site are investigated in order to find possible substitution for river sands as drainage materials. On the basis of measurement data at the construction site, it was concluded that use of the prefabricated horizontal drains shows satisfactory drainage capacity without instability of embankment.

  • PDF

A Study on the Surface Soil Stabilization Method on Marine Clay (해성점성토의 표층안정처리 공법에 관한 연구)

  • 천병식;한기열
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2000.10a
    • /
    • pp.129-134
    • /
    • 2000
  • Hardening agent has been the traditional material for surface soil stabilization a sat ground This study aims at determining optimal mixture ratio of hardening agent in accordance with the required design specificutions. Hardening agent is properly mixed with Fly ash, Gyosum, Slag and Cement for the etmmngite hydrates which is dective for early stabilization of unconsoliokrred soil. \ulcornerhe treated soil is the clay tint is widely found here and there in Koresz In this study, preliminary tests were performed to get optirml mixture ratio of stabilizer ingredient, and mrvine clay in Jin-Hae was used to get physid and Md properties. Labomtory tests of 50 stabilized soil were performed to get optimal mixture mtio for 16-stabilizer merial a 6 types, a d stabilizer mixing was determined

  • PDF

Analysis on the Physical Properties of Gwangyang Marine Clay (광양지역 해성점토의 물리적 특성 분석)

  • Heo, Yol;Kwan, Seonwok;Gang, Seokberm;Park, Seonghoon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.12
    • /
    • pp.63-74
    • /
    • 2010
  • Normally consolidated and slightly overconsolidated soft clay layer is widely distributed in the south coast of Korea. To ensure the efficient and economical construction design of any structure to be built on this soft soil, exhaustive studies related to geotechnical and physical engineering properties are required. In this study, the relationship of the physical properties of southern Gwangyang marine clay in the Korea Peninsula were examined, including natural water content, specific gravity, total unit weight, initial void ratio, liquid limit, plastic limit, and physical properties of activity and soil parameters. For the parameter relationship analysis, the latest relatively reliable data on the large harbor construction work were used, optimum values were deducted with linear regression and non-linear regression between soil parameters, water content or initial void ratio appears to be very large. Moreover, in the linear and involution pattern regression, equal coefficient of determination appeared. The relationship of the different parameters was shown to be excellent in the non-linear regression of involution equation and exponential equation pattern compared with the findings of linear regression analysis.