• Title/Summary/Keyword: Soft Switching

Search Result 775, Processing Time 0.027 seconds

Space Vector Modulated Three-Phase Soft-Switching Active Rectifier and Its Performance Evaluations

  • Fujii Yuma;Ahmed Tarek;Imamura Kosuke;Hiraki Eiji;Nakaoka Mutsuo
    • Proceedings of the KIPE Conference
    • /
    • 2003.07a
    • /
    • pp.213-215
    • /
    • 2003
  • This paper presents an instantaneous space vector modulated voltage source type three-phase soft-switching PFC rectifier using a single auxiliary resonant DC Link snubber for alternative energy utilizations. in the first place, the operating principle of an active auxiliary resonant DC link snubber circuit is described including its unique features. In the next place, the simulation analysis of three-phase soft-switching PWM rectifier is implemented, and the operating performances or the three-phase voltage-fed PWM rectifier treated here, which can operate under the conditions of sinewave line current shaping and utility power factor are evaluated and discussed on tile basis of this simulation results.

  • PDF

Design and Implementation of the ATM Handoff Subsystem Supporting Soft-Handoffs between Mobile Switching Centers

  • Yun Sung-Hyun;Cho Kwang-Moon
    • International Journal of Contents
    • /
    • v.1 no.1
    • /
    • pp.45-49
    • /
    • 2005
  • If the service provider provides mobile service with mobile switching centers that use different handoff message format, the soft-handoff between mobile switching centers is not available and the hard-handoff scheme is used instead. When this occurs, calls are often disconnected or there is an interruption of service. This can be very annoying to a mobile user. We propose the handoff subsystem of the ATM switch which provides the soft-handoff between wireless cells under the control of different MSCs. The proposed handoff subsystem transforms the handoff message format of the source MSC to that of the destination MSC. It also provides efficient routing scheme that distributes handoff packets to balance the traffic load.

  • PDF

Isolated Step-up DC/DC Converter applied Soft-switching Method (소프트스위칭 방식을 적용한 절연형 승압용 DC/DC 컨버터)

  • Kim, Young-Ju;Hwang, Jung-Goo;Kim, Sun-Pil;Park, Sung-Jun;Song, Sung-Geun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.7
    • /
    • pp.87-94
    • /
    • 2015
  • Recently, renewable energy sources are under the spotlight. due to the depletion of fossil fuels and environmental problem for the carbon dioxide. Among them, research on the Photovoltaic System using solar energy systems has been actively conducted. In this paper, we propose boosting the insulated DC/DC converter topologies Applied to soft-switching methods used in photovoltaic PCS. The proposed topology is of a type that combines a series of full-bridge converter and a boost converter, a full bridge converter and applying the insulation and soft switching system, the output voltage boost stage is carried out for the boost control. The proposed circuit validity was verified through the PSIM simulation and 5kW PV PCS Prototype and experiments.

HID Ballast using Soft Switching Multi Level Inverter (Soft Switching Multi Level Inverter를 이용한 HID용 Ballast)

  • Lee Jang-Sun;Kim Yoon-Ho;Kim Soo-Hong
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.9 no.6
    • /
    • pp.628-634
    • /
    • 2004
  • The soft switching is applied to the multi-level inverter to enhance the characteristics of HID(High Intensity Discharge) Ballast in headlight of vehicle. The electrical properties are investigated. The available modeling of the ballast in steady-state is calculated using mathematical method and the result is used in analyzing the power characteristics and design of the system. Finally the designed system md modeling is confirmed by the experiment.

A New High Efficiency Power Factor Correction PWM Rectifier with Reduced Conduction Loss and No Auxiliary Switches (새로운 고효율 역율보상 단상 PWM AC/DC 컨버터)

  • Kim, In-Dong
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.9 no.2
    • /
    • pp.209-221
    • /
    • 1997
  • This paper presents a soft switching unity power factor PWM rectifier, which features reduced conduction losses and soft switching with no auxiliary switches. The soft switching are achieved by using a simple commutation circuit with no auxiliary switches, and reduced conduction loses are achieved by employing a single converter, instead of a typical front end diode rectifier followed by a boost rectifier. Furthermore, thanks to good features such as simple PWM control at constant frequency, low switch stress and low VAR rating of commutation circuits, it is suitable for high power applications. The principle of operation is explained in detail, and major characteristics analysis and experimental results of the new converter also included.

  • PDF

ZVS Boost Converter with Soft Switching Auxiliary Circuit (소프트 스위칭 방식의 보조 회로를 갖는 영전압 스위칭 부스트 컨버터)

  • Song, In-Beom;Park, Kun-Wook;Jung, Doo-Yong;Kim, Dong-Seong;Jung, Yong-Chae;Won, Chung-Yuen
    • Proceedings of the KIPE Conference
    • /
    • 2010.07a
    • /
    • pp.487-488
    • /
    • 2010
  • This paper proposes a soft switching boost converter with an auxiliary circuit. This circuit helps a main switch operate as a soft switching. The main switch operates ZVS turn-on and ZVS turn-off. And the auxiliary switch operates ZCS turn-on and ZVS turn-off. In this paper, operation modes are analyzed and soft switching operation is verified through simulations.

  • PDF

A High Efficiency and High Power Chopper Circuit QRAS using Soft Switching under Test Evaluation at 8kW

  • Tsuruta Yukinori;Kawamura Atsuo
    • Journal of Power Electronics
    • /
    • v.6 no.1
    • /
    • pp.1-7
    • /
    • 2006
  • This paper is a record of the study on a high efficiency and high power chopper based on the new soft switching method QRAS (Quasi~resonant Regenerating Active Snubber) designed for a Fuel Cell Electric Vehicle (FCEV). This power chopper is basically proposed for 25kHz soft switching. To confirm the practicality and effectiveness of the converter, the fabrication of a prototype-model using IGBTs was completed. Additionally, a 8kW rating test, a light load test, a current discontinuous mode test and a stable operation resonance test was completed. The circuit geometry, the basic operation, and the 8kW one-tenth-prototype test results are reported with a $97.5\%$ efficiency measurement.

Soft Switching Three Phase Inverter with Two Auxiliary Switches

  • Mahdavi, Mohammad;Amini, Mohammad Reza;Emrani, Amin;Farzanehfa, Hosein
    • Journal of Power Electronics
    • /
    • v.11 no.6
    • /
    • pp.787-792
    • /
    • 2011
  • In this paper, a new three phase soft switching inverter is presented. All of the semiconductor elements of this converter are soft switched. Employing only two auxiliary switches as DC-link switches and a simple control circuit are the advantages of the proposed inverter. The analytical equations and operating modes of the presented inverter are explained in details. The design considerations are presented and the experimental results verify the theoretical analysis.

Basic Study of a Phase-Shifted Soft Switching High-Frequency Inverter with Boost PFC Converter for Induction Heating

  • Kawaguchi, Yuki;Hiraki, Eiji;Tanaka, Toshihiko;Nakaoka, Mutsuo
    • Journal of Power Electronics
    • /
    • v.8 no.2
    • /
    • pp.192-199
    • /
    • 2008
  • This paper is mainly concerned with a high frequency soft-switching PWM inverter suitable for consumer induction heating systems. The proposed system is composed of a soft switching chopper based boost PFC converter stage with passive snubber and phase shifted PWM controlled full bridge ZVZCS high frequency inverter stage. Its fundamental operating performances are illustrated and evaluated in the experimental results. Its effectiveness is substantially proved on the basis of the experimental results from a practical point of view.

Single Pulse-Width-Modulation Strategy for Dual-Active Bridge Converters

  • Byen, Byeng-Joo;Jeong, Byong-Hwan;Choe, Gyu-Ha
    • Journal of Power Electronics
    • /
    • v.18 no.1
    • /
    • pp.137-146
    • /
    • 2018
  • This paper describes a single pulse-width modulation control strategy using the Single Pulse-Width Modulation (SPWM) method with a soft-switching technique for a wide range of output voltages from a bidirectional Dual-Active Bridge (DAB) converter. This method selects two typical inductor current waveforms for soft-switching, and proposes a rule that makes it possible to achieve soft-switching without any compensation algorithm from the waveforms. In addition, both the step-up and step-down conditions are analyzed. This paper verifies that the leakage inductance is independent from the rule, which makes it easier to apply in DAB converters. An integrated algorithm, which includes step-up and step-down techniques, is proposed. The results of experiments conducted on a 50-kW prototype are presented. The system efficiency is experimentally verified to be from 85.6% to 97.5% over the entire range.