• Title/Summary/Keyword: Sodium sulfate solution

Search Result 293, Processing Time 0.023 seconds

The transformation of the complex of high charge density cationic polymer with sodium dodecyl sulfate into vesicles by nonionic surfactant (고전하밀도 양이온성폴리머와 Sodium dodecyl sulfate가 만드는 콤플렉스에 대한 비이온계면활성제의 영향)

  • Lee, Jung-No;Kang, Kye-Hong
    • Journal of the Korean Applied Science and Technology
    • /
    • v.25 no.2
    • /
    • pp.205-210
    • /
    • 2008
  • The transformation of the liquid crystal complex made by binding of anionic surfactant, sodium dodecyl sulfate (SDS), into high charge density cationic polymer, the homopolymer of diallyldimethylammonium chloride (PDADMAC) was induced by adding of nonionic surfactants and investigated by means of microscopy and FE.SEM. Among nonionic surfactants in this experiments polyethylene glycol (3 mol) ether of lauryl alcohol (laureth-3) made variation in the complex. The laureth-3 transformed the complex into spherulite vesicle with the size of ca.$100{\mu}m$. This change increased the viscosity and the turbidity of the solution phase separated originally. Microscope showed that they are spherulite particles and polarized microscope suggested they are multi.lamellar liquid crystals. FE-SEM also proved that explicitly.

Electrochemical Studies on the Methylviologen-Sodium Dodecyl Sulfate Solution in the Presence of $MgCl_2$ (염화마그네슘 존재하의 메틸비올로겐-도데실황산나트륨 용액의 전기화학적 연구)

  • Ko, Young Chun;Chung, Keun Ho
    • Analytical Science and Technology
    • /
    • v.11 no.3
    • /
    • pp.151-155
    • /
    • 1998
  • Electrochemical behaviours on 1.0 mM methylviologen ($MV^{2+}$) in 100 mM NaCl+27 mM $MgCl_2$ solution, without and with sodium dodecyl sulfate (SDS), were studied. The intersection of two lines on ${\Delta}E_p$ (the difference between the anodic, $E_{pa}$, and the cathodic, $E_{pc}$, peak potentials) of the first and second redox waves vs. -log[SDS] plot was determined as a critical micelle concentration (CMC). When $Mg^{2+}$ was added, the effective access of $MV{\cdot}^+$ to the glassy carbon electrode surface became possible and the formation of micelles was retarded.

  • PDF

Acid-Base and Spectroscopic Properties of 1,4-Benzodiazepines in Sodium Dodecyl Sulfate Micellar Solutions

  • Joon Woo Park;Hye Sung Cho
    • Bulletin of the Korean Chemical Society
    • /
    • v.11 no.1
    • /
    • pp.54-58
    • /
    • 1990
  • Acid-base equilibria and spectroscopic properties of diazepam and chlorodiazepoxide were investigated in sodium dodecyl sulfate (SDS) micellar solutions as functions of pH. The results were compared with the behaviors in homogeneous aqueous media. The presence of SDS increased the $pK_a$ of chlorodiazepoxide to 6.3 from 4.7, while it has little effect on the $pK_a$ of diazepam. The acidic protonated form of diazepam was moderately fluorescent when the solution was excited at 350 nm, and emissnion intensity of the species was enhanced about 5 fold by the presence of SDS. On the other hand, the acidic solution of chlorodiazepoxide was non-fluorescent, but the neutral solution of the compound was fluorescent upon excitation at 350 nm. The emission peak of the neutral chlorodiazepoxide shifted to shorter wavelength region without significant change in the emission intensity upon the addition of SDS. Procedures for assay of the individual drugs from their mixture by the use of SDS micelle were discussed.

Selection of Portland Cement for Prevention of Sulfate Attack-Part 1 Sodium Sulfate Attack (황산염침식 방지를 위한 포틀랜드시멘트의 선정-Part 1 황산나트륨 침식)

  • Kim, Jong-Pil
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.4
    • /
    • pp.441-447
    • /
    • 2009
  • This paper presents a detailed experimental study on the sulfate resistance of specimens made with portland cement exposed to sulfate attack. The mortar specimens were immersed in a 5% sodium sulfate solution for 360 days and regularly monitored for visual damage, compressive strength loss and expansion. In addition, at the end of 360 days, the products of sulfate attack and the mechanism of attack were investigated through X-ray diffraction, TG&DSC and scanning electron microscopy. The test results indicated that the sulfate deterioration data was ordinary portland cement > sulfate resistance portland cement > low heat portland cement. The microstructural studies indicated that the main reaction product of deterioration of the mortar specimens was the formation of ettringite, gypsum and thaumasite due to sulfate attack. For portland cement matrices, a low heat cement matrix containing the lowest C3A and silicate ratio (C/S) was beneficient against the sulfate attack.

Manufacture of Vanadium pentoxide and nickel sulfate from heavy oil fly ash

  • Park, Gyeong-Ho
    • Resources Recycling
    • /
    • v.2 no.4
    • /
    • pp.23-26
    • /
    • 1993
  • This work is carried out to develop the recovery process of vanadium as vanadium pentoxide and nickel as nickel sulphate from the leaching solution of heavy oil fly ash. First, sodium chlorate solution was added to the leaching solution to oxidize vanadium ions. With adjusting pH of the solution and heating, vanadium ions(V) is hydrated and precipitated as red cake of $V_2O_5$ from the solution. After recovering vanadium, nickel is recovered as ammonium nickel sulfate with crystallization process. From this nickel salt, nickel sulfate which meets the specifications for the electroplating industry can be produced economically. More than 85% of vana-dium and nickel in the fly ash are recovered in this process.

  • PDF

Separation of Lanthanum(III) by Selective Precipitation from Sulfuric Acid Solution Containing Iron(III) (황산철(III)용액에서 란타넘(III)의 선택적 침전 분리)

  • Song, Si Jeong;Lee, Man Seung
    • Resources Recycling
    • /
    • v.30 no.2
    • /
    • pp.31-38
    • /
    • 2021
  • To investigate the separation of La(III) from sulfuric acid solutions containing Fe(III), rare earth double salt precipitation experiments were performed by adding sodium sulfate. In this work, the effect of sodium sulfate, Fe(III), and La(III) concentrations; reaction temperature; and time was investigated. The extent of precipitation of La(III) was proportional to the concentrations of Na+ and SO42- in the solution. As the reaction temperature increased to 100 ℃, the extent of precipitation of La(III) increased. The extent of precipitation of Fe(III) decreased with increasing reaction time. The concentration ratio of Fe(III) to La(III) did not have a significant effect on the precipitation of La(III). Our results indicate that it is possible to separate La(III) from a ferric sulfate solution through selective precipitation by adding sodium sulfate.

Aggregation of Partially Quarternized Poly(4-vinylpyridine) with Anionic Surfactant Sodium Dodecvl Sulfate (부분적으로 4차아민화된 폴리(4-비닐피리딘)과 음이온 계면활성제인 도데실 황산 소듐과의 응집체 형성)

  • 김용철;박일현;심후식;최이준
    • Polymer(Korea)
    • /
    • v.28 no.2
    • /
    • pp.154-161
    • /
    • 2004
  • Modified poly(4-vinylpyridine) was obtained by partial quarternization of nitrogen atoms in pyridine rings of poly(4-vinylpyridine) with methyl group. By means of laser light scattering and fluorescence, it was found that this modified polymer chains were aggregated in the aqueous solution and its structure was core-shell type. The hydrophobic parts of the chains were densely condensed in core part and the hydrophilic part of quarternized amino with positive charge formed the shell part. In the mixed system of modified poly(4-vinylpyridine) and anionic surfactant, sodium dodecyl sulfate, it was observed that a critical aggregation concentration existed and that this critical concentration was suddenly decreased above 0.1 M NaCl. The size change of aggregates was also investigated by dynamic light scattering while sodium dodecyl sulfate was added into polymer solution upto the critical aggregation concentration.

Resistance against Chloride Ion and Sulfate Attack of Cementless Concrete (무시멘트 콘크리트의 염소이온 침투 및 황산염 침투 저항성)

  • Lee, Hyun-Jin;Bae, Su-Ho;Kwon, Soon-Oh;Lee, Kwang-Myong;Jeon, Jun-Tai
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.6 no.2
    • /
    • pp.63-69
    • /
    • 2015
  • It has been well known that concrete structures exposed to chloride and sulfate attack environments lead to significant deterioration in their durability due to chloride ion and sulfate ion attack. The purpose of this experimental research is to evaluate the resistance against chloride ion and sulfate attack of the cementless concrete replacing the cement with ground granulated blast furnace slag. For this purpose, the cementless concrete specimens were made for water-binder ratios of 40%, 45%, and 50%, respectively and then this specimens were cured in the water of $20{\pm}3^{\circ}C$ and immersed in fresh water, 10% sodium sulfate solution for 28 and 91 days, respectively. To evaluate the resistance to chloride ion and sulfate attack for the cementless concrete specimens, the diffusion coefficient for chloride ion and compressive strength ratio, mass change ratio, and length change ratio were measured according to the NT BUILD 492 and JSTM C 7401, respectively. It was observed from the test results that the resistance against chloride ion and sulfate attack of the cemetntless concrete were comparatively largely increased than those of OPC concrete with decreasing water-binder ratio.

Performance of FRP confined and unconfined geopolymer concrete exposed to sulfate attacks

  • Alzeebaree, Radhwan;Gulsan, Mehmet Eren;Nis, Anil;Mohammedameen, Alaa;Cevik, Abdulkadir
    • Steel and Composite Structures
    • /
    • v.29 no.2
    • /
    • pp.201-218
    • /
    • 2018
  • In this study, the effects of magnesium sulfate on the mechanical performance and the durability of confined and unconfined geopolymer concrete (GPC) specimens were investigated. The carbon and basalt fiber reinforced polymer (FRP) fabrics with 1-layer and 3-layers were used to evaluate the performances of the specimens under static and cyclic loading in the ambient and magnesium sulfate environments. In addition, the use of FRP materials as a rehabilitation technique was also studied. For the geopolymerization process of GPC specimens, the alkaline activator has selected a mixture of sodium silicate solution ($Na_2SiO_3$) and sodium hydroxide solution (NaOH) with a ratio ($Na_2SiO_3/NaOH$) of 2.5. In addition to GPC specimens, an ordinary concrete (NC) specimens were also produced as a reference specimens and some of the GPC and NC specimens were immersed in 5% magnesium sulfate solutions. The mechanical performance and the durability of the specimens were evaluated by visual appearance, weight change, static and cyclic loading, and failure modes of the specimens under magnesium sulfate and ambient environments. In addition, the microscopic changes of the specimens due to sulfate attack were also assessed by scanning electron microscopy (SEM) to understand the macroscale behavior of the specimens. Results indicated that geopolymer specimens produced with nano-silica and fly ash showed superior performance than the NC specimens in the sulfate environment. In addition, confined specimens with FRP fabrics significantly improved the compressive strength, ductility and durability resistance of the specimens and the improvement was found higher with the increased number of FRP layers. Specimens wrapped with carbon FRP fabrics showed better mechanical performance and durability properties than the specimens wrapped with basalt FRP fabrics. Both FRP materials can be used as a rehabilitation material in the sulfate environment.

Attachment Behavior of Fission Products to Solution Aerosol

  • Takamiya, Koichi;Tanaka, Toru;Nitta, Shinnosuke;Itosu, Satoshi;Sekimoto, Shun;Oki, Yuichi;Ohtsuki, Tsutomu
    • Journal of Radiation Protection and Research
    • /
    • v.41 no.4
    • /
    • pp.350-353
    • /
    • 2016
  • Background: Various characteristics such as size distribution, chemical component and radio-activity have been analyzed for radioactive aerosols released from Fukushima Daiichi Nuclear Power Plant. Measured results for radioactive aerosols suggest that the potential transport medium for radioactive cesium was non-sea-salt sulfate. This result indicates that cesium isotopes would preferentially attach with sulfate compounds. In the present work the attachment behavior of fission products to aqueous solution aerosols of sodium salts has been studied using a generation system of solution aerosols and spontaneous fission source of $^{248}Cm$. Materials and Methods: Attachment ratios of fission products to the solution aerosols were compared among the aerosols generated by different solutions of sodium salt. Results and Discussion: A significant difference according as a solute of solution aerosols was found in the attachment behavior. Conclusion: The present results suggest the existence of chemical effects in the attachment behavior of fission products to solution aerosols.