• Title/Summary/Keyword: Sodium periodate

Search Result 18, Processing Time 0.028 seconds

Determination of Rh(III) by Spectrofluorimetry Using Oxidation Reaction of Nile Blue (Nile Blue의 산화반응을 이용한 Rh(III)의 형광분광법적 정량)

  • Lee, Sang Hak;Lee, Myeong
    • Journal of the Korean Chemical Society
    • /
    • v.45 no.1
    • /
    • pp.25-30
    • /
    • 2001
  • A selective kinetic fluorimetric method for the determination of trace rhodium(Ⅲ), based on the catalytic effect of rhodium(Ⅲ) on the oxidation of nile blue by periodate have been studied. The effects of pH and concentrations of nile blue, sodium periodate, trioctyl phosphine oxide(TOPO) and temperature were investigated. The calibration curve for rhodium(Ⅲ) ion was linear over the range from 100 ng/mL to 0.1 ng/mL and the detection limit was 0.01 ng/mL under the optimal experimental conditions. Effects of interferences from several cations and anions for the determination of rhodium(Ⅲ) were also investigated.

  • PDF

Effect of pH in Sodium Periodate based Slurry on Ru CMP (Sodium Periodate 기반 Slurry의 pH 변화가 Ru CMP에 미치는 영향)

  • Kim, In-Kwon;Cho, Byung-Gwun;Park, Jin-Goo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.117-117
    • /
    • 2008
  • In MIM capacitor, poly-Si bottom electrode is replaced with metal bottom electrode. Noble metals can be used as bottom electrodes of capacitors because they have high work function and remain conductive in highly oxidizing conditions. In addition, they are chemically very stable. Among novel metals, Ru (ruthenium) has been suggested as an alternative bottom electrode due to its excellent electrical performance, including a low leakage of current and compatibility to high dielectric constant materials. Chemical mechanical planarization (CMP) process has been suggested to planarize and isolate the bottom electrode. Even though there is a great need for development of Ru CMP slurry, few studies have been carried out due to noble properties of Ru against chemicals. In the organic chemistry literature, periodate ion ($IO_4^-$) is a well-known oxidant. It has been reported that sodium periodate ($NaIO_4$) can form $RuO_4$ from hydrated ruthenic oxide ($RuO_2{\cdot}nH_2O$). $NaIO_4$ exist as various species in an aqueous solution as a function of pH. Also, the removal mechanism of Ru depends on solution of pH. In this research, the static etch rate, passivation film thickness and wettability were measured as a function of slurry pH. The electrochemical analysis was investigated as a function of pH. To evaluate the effect of pH on polishing behavior, removal rate was investigated as a function of pH by using patterned and unpatterned wafers.

  • PDF

A Simple and One-pot Oxidative Conversion of Alcohols or Aldehydes to the Nitriles using NaIO4/KI in Aqueous NH3

  • Zolfigol, Mohammad Ali;Hajjami, Maryam;Ghorbani-Choghamarani, Arash
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.12
    • /
    • pp.4191-4194
    • /
    • 2011
  • Sodium periodate ($NaIO_4$) and potassium iodide (KI) in aqueous ammonia has been used for the one-pot synthesis of nitriles from the corresponding aldehydes and alcohols in moderate to good yield. This transformation, proceeds via an in situ oxidation- imination-aldimine oxidation sequence.

Synthesis and Biological Activities of Aklyl Thiosulfi(o)nates (Alkyl thiosulfi(o)nate 화합물의 합성과 생리활성)

  • Jung, Hyun-Jin;Kyung, Kyu-Hang;Jung, Yi-Sook;Kyung, Suk-Hun
    • Applied Biological Chemistry
    • /
    • v.51 no.3
    • /
    • pp.183-187
    • /
    • 2008
  • Alkyl thiosulfi(o)nates, analogs of allyl-2-propene-1-thiosulfinate isolated from Allium sativum and having antibacterial activity, were chemically synthesized and their biological activities were investigated. Alkyl thiosulfinates were prepared by oxidation of corresponding disulfides with organic peroxy acid, while alkyl thiosulfonates could be obtained by oxidation of the alkyl thiosulfinates using sodium periodate. All synthetic thiosulfi(o)nates showed antibacterial activity against Staphylococcus aureus B33 and antifungal activity against Candida utilis ATCC42416. Further more synthetic alkyl thiosulfonates displayed antioxidant activity and have also prevention effect of platelet aggregation induced by collagen in rat.

A Novel Synthesis of 3,9-Dialkyl and 8-Aryl-3,9-dimethylxanthines

  • Youssif, Shaker;El-Kafrawy, Azza;Bayoumy, Besheer;El-Bahaie, Said
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.3
    • /
    • pp.374-380
    • /
    • 2002
  • Several compounds of 3,9-dialkylxanthines were prepared from 1-methyl-6-chlorouracil via nucleophillic reactions with different aliphatic amines, followed by nitrosation, reduction, formaylation and finally dehydrocyclization. On the other hands, a series of 8-aryl-3,9-dimethylxanthines were synthesized by dehydrocyclization of 5-arylamido-1-methyl-6-methylaminouracils either by fussion or oxidation of 5-arylidine-amino-1-methyl-6-methylaminouracils using sodium periodate. Phosphoryl chloride was found to be uneffective reagent for dehydrocyclization that, gave another products from 1,3-oxazolo[5,4-d] pyrimidines.

The Binding of Aflatoxin $B_1$ Modulates the Adhesion Properties of Lactobacillus casei KCTC 3260 to a HT29 Colon Cancer Cell Line

  • Hwang, Kwon-Tack;Lee, Won-Jae;Kim, Gye-Yeop;Lee, Shin-Kyung;Lee, Jeong-Min;Jun, Woo-Jin
    • Food Science and Biotechnology
    • /
    • v.14 no.6
    • /
    • pp.866-870
    • /
    • 2005
  • The 14 lactic acid bacteria (LAB) have been evaluated to determine the binding capacity to HT29 cell and Aflatoxin $B_1$ ($AFB_1$). The interaction of LAB to HT29 cells has been further investigated to identify the possibility of competing the binding sites with $AFB_1$. Of 14 LAB strains, Lactobacillus casei KCTC 3260 demonstrated the higher adhesiveness to HT29 and $AFB_1$ with the rate of 19.6% and 46.3%, respectively. In competitive analysis for binding sites, the adhesion of L. casei KCTC 3260 to HT29 cells was reduced with 100 nmol $AFB_1$ by 31.2%. The protoplast of L. casei KCTC 3260 showed no binding capacity to HT29 cells with increment of $AFB_1$ concentration, indicating that cell wall components might serve as a critical factor for the binding. To discriminate the major component influencing on L. casei KCTC 3260 binding to HT29 cells and $AFB_1$, four different pre-treatments (lipase, pronase E, sodium m-periodate, and urea) were employed. Of those, sodium m-periodate treatment caused the lower adhesion of L. casei KCTC 3260 to HT29 cells with the increment of $AFB_1$ concentration. These results indicated that carbohydrate moiety on the cell wall of L. casei KCTC 3260 might be the most critical component in binding to both HT29 cells and $AFB_1$.

Determination of Epinephrine Using Sodium Iodate in Chemiluminescence

  • Lee, J.S.;Lim, H.B.
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.12
    • /
    • pp.2315-2318
    • /
    • 2007
  • Epinephrine was determined using a lab-made chemiluminescence (CL) system with air pump. Luminolsodium IO4? chemiluminescence system was employed to produce the luminescence of epinephrine. In the reaction, epinephrine was oxidized to produce superoxide or singlet oxygen by periodate in alkaline solution, which enhanced CL of luminol. For optimization, various buffers, such as phosphate, borate, and tris, were studied in this experiment. Compared to NaOH, the phosphate and borate buffer showed better reproducibility with similar sensitivity. Small amount of sample, 22 μL, was required for a measurement. The limit of quantification for epinephrine was obtained to be ~10?9 g/mL after optimization.

Production of Exo-polysaccharide from Submerged Culture of Grifola frondosa and Its Antioxidant Activity

  • Lee, Keyong-Ho;Yoon, Won-Ho
    • Food Science and Biotechnology
    • /
    • v.18 no.5
    • /
    • pp.1253-1257
    • /
    • 2009
  • Exo-polysaccharide isolated from the culture of Grifola frondosa was modified by sodium periodate ($NaIO_4$) and sodium chlorite ($NaClO_2$) to delete polysaccharide part and phenolic compound, respectively, and was investigated what effect has each part of exo-polysaccharide against 2,2'-azobis(2-amidinopropane) dihydrochloride (AAPH)-induced oxidative stress in porcine kidney epithelial cells (LLC-PK1). Oxidative stress on LLC-PK1 cell was measured by cell viability, lipid peroxidation, superoxide dismutase (SOD), and glutathione peroxidase (GSH-px) activity. Exposure of LLC-PK1 cells to 1 mM AAPH for 24 hr resulted in significant decrease in cell viability, SOD, and GSH-px action, and significant increase in lipid peroxidation. The treatment of exo-polysaccharide and $NaIO_4$ modified sample protected LLC-PK1 cells from AAPH-induced cell damage such as cell viability, lipid peroxidation, SOD, and GSH-px activity in a dose dependant manner (10, 100, and $500{\mu}g/mL$). However, the treatment of $NaClO_2$ modified sample did not affect for cell viability, lipid peroxidation, SOD, and GSH-px activity. The antioxidant activity of exo-polysaccharide was significantly decreased on AAPH-induced LLC-PK1 cell system when phenolic compound was deleted. The antioxidant activity was significantly correlated with the content of phenolic compound of exo-polysaccharide.

Adsorption of Heavy Metal Ions onto Chemically Oxidized Ceiba pentandra (L.) Gaertn. (Kapok) Fibers

  • Chung, Byung-Yeoup;Cho, Jae-Young;Lee, Min-Hee;Wi, Seung-Gon;Kim, Jin-Hong;Kim, Jae-Sung;Kang, Phil-Hyun;Nho, Young-Chang
    • Journal of Applied Biological Chemistry
    • /
    • v.51 no.1
    • /
    • pp.28-35
    • /
    • 2008
  • The physico-chemical properties of kapok fibers were altered via the combination processes of chlorite-periodate oxidation, in order to assess their efficacy as a heavy metal adsorbent. The chemically-oxidized kapok fibers were found to harbor a certain amount of polysaccharides, together with lowered lignin content. This alteration in lignin characteristics was clearly confirmed via FTIR and NBO yield. Moreover, chemically oxidized kapok fibers retained their hollow tube shape, although some changes were noted. The chemically oxidized kapok fibers evidenced elevated ability to adsorb heavy metal ions with the best fit for the Langmuir adsorption isotherm model. Three cycles of adsorption-desorption were conducted with in-between regeneration steps. Our experimental results indicated that chemically oxidized kapok fibers possessed excellent adsorption characteristics, and the modified kapok fibers could be completely regenerated with almost equimolar diluted sodium hydroxide. Pb, Cu, Cd and Zn ions evidenced adsorption rates of 93.55%, 91.83%, 89.75%, and 92.85% on the chemically oxidized kapok fibers. The regeneration efficiency showed 73.58% of Pb, 71.55% of Cu, 66.87% of Cd, and 75.00% of Zn for 3rd cycle with 0.0125N NaOH.

Covalent Coupling of ${\beta}-Fructofuranosidase$ on Microbial Cells (미생물 세포에 공유결합으로 고정화시킨 ${\beta}-Fructofuranosidase$에 관한 연구)

  • Uhm, Tai-Boong;Byun, Si-Myung
    • Korean Journal of Food Science and Technology
    • /
    • v.16 no.3
    • /
    • pp.267-272
    • /
    • 1984
  • ${\beta}-Fructofuranosidase$ was immobilized covalently on the oxidized microbial wall of a Penicillium spp. 'PS-8', which is totally different from the conventional whole cell immobilization in concept. The immobilization of ${\beta}-fructofuranosidase$ by a series of treatments; oxidation of microbial cells with sodium metaperiodate, enzyme loading on the oxidized cells, extrusion, and crosslinking induced by glutaradehyde, were carried out. The final product had a good mechanical strength and showed 26% of the applied enzyme activity. The specific activity was 750 units per g of the dry cell product. The immobilized enzyme showed the kinetic parameters as follows; optimum pH at 5, optimum temperature at $55^{\circ}C$, activation energy of 19 kJ $mol^{-1}$, and apparent Km of 55 mM.

  • PDF