• Title/Summary/Keyword: Sodium nitroprusside (SNP)

Search Result 136, Processing Time 0.032 seconds

Synergic induction of human periodontal ligament fibroblast cell death by nitric oxide and N-methyl-D-aspartic acid receptor antagonist

  • Seo, Tae-Gun;Cha, Se-Ho;Woo, Kyung-Mi;Park, Yun-Soo;Cho, Yun-Mi;Lee, Jeong-Soon;Kim, Tae-Il
    • Journal of Periodontal and Implant Science
    • /
    • v.41 no.1
    • /
    • pp.17-22
    • /
    • 2011
  • Purpose: Nitric oxide (NO) has been known as an important regulator of osteoblasts and periodontal ligament cell activity. This study was performed to investigate the relationship between NO-mediated cell death of human periodontal ligament fibroblasts (PDLFs) and N-methyl-D-aspartic acid (NMDA) receptor antagonist (+)-5-methyl-10, 11-dihydro-5H-dibenzo[a,d]cyclohepten-5, 10-imine hydrogen maleate (MK801). Methods: Human PDLFs were treated with various concentrations (0 to 4 mM) of sodium nitroprusside (SNP) with or without $200\;{\mu}M$ MK801 in culture media for 16 hours and the cell medium was then removed and replaced by fresh medium containing MTS reagent for cell proliferation assay. Western blot analysis was performed to investigate the effects of SNP on the expression of Bax, cytochrome c, and caspase-3 proteins. The differences for each value among the sample groups were compared using analysis of variance with 95% confidence intervals. Results: In the case of SNP treatment, as a NO donor, cell viability was significantly decreased in a concentration-dependent manner. In addition, a synergistic effect was shown when both SNP and NMDA receptor antagonist was added to the medium. SNP treated PDLFs exhibited a round shape in culture conditions and were dramatically reduced in cell number. SNP treatment also increased levels of apoptotic marker protein, such as Bax and cytochrome c, and reduced caspase-3 in PDLFs. Mitogen-activated protein kinase signaling was activated by treatment of SNP and NMDA receptor antagonist. Conclusions: These results suggest that excessive production of NO may induce apoptosis and that NMDA receptor may modulate NO-induced apoptosis in PDLFs.

Hydrogen Peroxide- and Nitric Oxide-mediated Disease Control of Bacterial Wilt in Tomato Plants

  • Hong, Jeum Kyu;Kang, Su Ran;Kim, Yeon Hwa;Yoon, Dong June;Kim, Do Hoon;Kim, Hyeon Ji;Sung, Chang Hyun;Kang, Han Sol;Choi, Chang Won;Kim, Seong Hwan;Kim, Young Shik
    • The Plant Pathology Journal
    • /
    • v.29 no.4
    • /
    • pp.386-396
    • /
    • 2013
  • Reactive oxygen species (ROS) generation in tomato plants by Ralstonia solanacearum infection and the role of hydrogen peroxide ($H_2O_2$) and nitric oxide in tomato bacterial wilt control were demonstrated. During disease development of tomato bacterial wilt, accumulation of superoxide anion ($O_2{^-}$) and $H_2O_2$ was observed and lipid peroxidation also occurred in the tomato leaf tissues. High doses of $H_2O_2$ and sodium nitroprusside (SNP) nitric oxide donor showed phytotoxicity to detached tomato leaves 1 day after petiole feeding showing reduced fresh weight. Both $H_2O_2$ and SNP have in vitro antibacterial activities against R. solanacearum in a dose-dependent manner, as well as plant protection in detached tomato leaves against bacterial wilt by $10^6$ and $10^7$ cfu/ml of R. solanacearum. $H_2O_2$- and SNP-mediated protection was also evaluated in pots using soil-drench treatment with the bacterial inoculation, and relative 'area under the disease progressive curve (AUDPC)' was calculated to compare disease protection by $H_2O_2$ and/or SNP with untreated control. Neither $H_2O_2$ nor SNP protect the tomato seedlings from the bacterial wilt, but $H_2O_2$ + SNP mixture significantly decreased disease severity with reduced relative AUDPC. These results suggest that $H_2O_2$ and SNP could be used together to control bacterial wilt in tomato plants as bactericidal agents.

Mechanism underlying NO-induced apoptosis in human gingival fibroblasts

  • Hwang, In-Nam;Jeong, Yeon-Jin;Jung, Ji-Yeon;Lee, Jin-Ha;Kim, Kang-Moon;Kim, Won-Jae
    • International Journal of Oral Biology
    • /
    • v.34 no.1
    • /
    • pp.7-14
    • /
    • 2009
  • Nitric oxide (NO) acts as an intracellular messenger at the physiological level but can be cytotoxic at high concentrations. The cells within periodontal tissues, such as gingival and periodontal fibroblasts, contain nitric oxide syntheses and produce high concentrations of NO when exposed to bacterial lipopolysaccharides and cytokines. However, the cellular mechanisms underlying NO-induced cytotoxicity in periodontal tissues are unclear at present. In our current study, we examined the NO-induced cytotoxic mechanisms in human gingival fibroblasts (HGF). Cell viability and the levels of reactive oxygen species (ROS) were determined using a MTT assay and a fluorescent spectrometer, respectively. The morphological changes in the cells were examined by Diff-Quick staining. Expression of the Bcl-2 family and Fas was determined by RT-PCR or western blotting. The activity of caspase-3, -8 and -9 was assessed using a spectrophotometer. Sodium nitroprusside (SNP), a NO donor, decreased the cell viability of the HGF cells in a dose- and time-dependent manner. SNP enhanced the production of ROS, which was ameliorated by NAC, a free radical scavenger. ODQ, a soluble guanylate cyclase inhibitor, did not block the SNP-induced decrease in cell viability. SNP also caused apoptotic morphological changes, including cell shrinkage, chromatin condensation, and DNA fragmentation. The expression of Bax, a member of the proapoptotic Bcl-2 family, was upregulated in the SNP-treated HGF cells, whereas the expression of Bcl-2, a member of the anti-apoptotic Bcl-2 family, was downregulated. SNP augmented the release of cytochrome c from the mitochondria into the cytosol and enhanced the activity of caspase-8, -9, and -3. SNP also upregulated Fas, a component of the death receptor assembly. These results suggest that NO induces apoptosis in human gingival fibroblast via ROS and the Bcl-2 family through both mitochondrial- and death receptor-mediated pathways. Our data also indicate that the cyclic GMP pathway is not involved in NO-induced apoptosis.

Activation of Phospholipase Cγ by Nitric Oxide in Choriocarcinoma Cell Line, BeWo Cells (Choriocarcinoma 세포주 BeWo 세포에서 nitric oxide에 의한 phospholipase Cγ 의 활성)

  • 차문석;곽종영
    • Journal of Life Science
    • /
    • v.13 no.6
    • /
    • pp.849-855
    • /
    • 2003
  • Nitric oxide (NO) plays an important role as a signaling molecule in the proliferation of placenta trophoblasts. In this study, we investigated the effect of NO on the activation of phospholipase C (PLC) in BeWo cells, choriocar-cinoma cell line. Sodium nitroprusside (SNP), an agent to produce NO spontaneously in cells, alone increased $[^3H]$ thymidine incorporation of BeWo cells, indicating NO stimulates proliferation of the cells. NO-induced proliferation of BeWo cells was blocked by U73122, an inhibitor of PLC, suggesting that NO-induced PLC activation is involved in the cell proliferation. NO also stimulated extracellular signal-regulated kinase (ERK) in BeWo cells, indicated by increased phosphorylation of ERK1/2 in Western blotting using anti-phospho-ERK1/2 antibody. NO-induced phos-phorylation of ERK1/2 was not abrogated by U73122. $PLC\gamma_1$l but not$PLC\gamma_2$ was tyrosine phosphorylated by SNP in immunoprecipitation assay using anti-$PLC\gamma_1$/$PLC\gamma_2$ antibodies, and SNP-induced phosphorylation of $PLC\gamma_1$ was abrogated by pre-treatment of cells with genistein and PD98059, indicating that NO induced-phosphorylation of $PLC\gamma_1$ is mediated by ERK. These results suggest that NO stimulates the proliferation of BeWo cells through ERK and $PLC\gamma_1$.

Analysis of the Baroreceptor and Vestibular Receptor Inputs in the Rostral Ventrolateral Medulla following Hypotension in Conscious Rats

  • Lan, Yan;Lu, Huan-Jun;Jiang, Xian;Li, Li-Wei;Yang, Yan-Zhao;Jin, Guang-Shi;Park, Joo Young;Kim, Min Sun;Park, Byung Rim;Jin, Yuan-Zhe
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.19 no.2
    • /
    • pp.159-165
    • /
    • 2015
  • Input signals originating from baroreceptors and vestibular receptors are integrated in the rostral ventrolateral medulla (RVLM) to maintain blood pressure during postural movement. The contribution of baroreceptors and vestibular receptors in the maintenance of blood pressure following hypotension were quantitatively analyzed by measuring phosphorylated extracellular regulated protein kinase (pERK) expression and glutamate release in the RVLM. The expression of pERK and glutamate release in the RVLM were measured in conscious rats that had undergone bilateral labyrinthectomy (BL) and/or sinoaortic denervation (SAD) following hypotension induced by a sodium nitroprusside (SNP) infusion. The expression of pERK was significantly increased in the RVLM in the control group following SNP infusion, and expression peaked 10 min after SNP infusion. The number of pERK positive neurons increased following SNP infusion in BL, SAD, and BL+SAD groups, although the increase was smaller than seen in the control group. The SAD group showed a relatively higher reduction in pERK expression when compared with the BL group. The level of glutamate release was significantly increased in the RVLM in control, BL, SAD groups following SNP infusion, and this peaked 10 min after SNP infusion. The SAD group showed a relatively higher reduction in glutamate release when compared with the BL group. These results suggest that the baroreceptors are more powerful in pERK expression and glutamate release in the RVLM following hypotension than the vestibular receptors, but the vestibular receptors still have an important role in the RVLM.

Nitric Oxide-Induced Autophagy in MC3T3-E1 Cells is Associated with Cytoprotection via AMPK Activation

  • Yang, Jung Yoon;Park, Min Young;Park, Sam Young;Yoo, Hong Il;Kim, Min Seok;Kim, Jae Hyung;Kim, Won Jae;Jung, Ji Yeon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.19 no.6
    • /
    • pp.507-514
    • /
    • 2015
  • Nitric oxide (NO) is important in the regulation of bone remodeling, whereas high concentration of NO promotes cell death of osteoblast. However, it is not clear yet whether NO-induced autophagy is implicated in cell death or survival of osteoblast. The present study is aimed to examine the role of NO-induced autophagy in the MC3T3-E1 cells and their underlying molecular mechanism. The effect of sodium nitroprusside (SNP), an NO donor, on the cytotoxicity of the MC3T3-E1 cells was determined by MTT assay and expression of apoptosis or autophagy associated molecules was evaluated by western blot analysis. The morphological observation of autophagy and apoptosis by acridine orange stain and TUNEL assay were performed, respectively. Treatment of SNP decreased the cell viability of the MC3T3-E1 cells in dose- and time-dependent manner. SNP increased expression levels of p62, ATG7, Beclin-1 and LC3-II, as typical autophagic markers and augmented acidic autophagolysosomal vacuoles, detected by acridine orange staining. However, pretreatment with 3-methyladenine (3MA), the specific inhibitor for autophagy, decreased cell viability, whereas increased the cleavage of PARP and caspase-3 in the SNP-treated MC3T3-E1 cells. AMP-activated protein kinase (AMPK), a major autophagy regulatory kinase, was activated in SNP-treated MC3T3-E1 cells. In addition, pretreatment with compound C, an inhibitor of AMPK, decreased cell viability, whereas increased the number of apoptotic cells, cleaved PARP and caspase-3 levels compared to those of SNP-treated MC3T3-E1 cells. Taken together, it is speculated that NO-induced autophagy functions as a survival mechanism via AMPK activation against apoptosis in the MC3T3-E1 cells.

Up-regulation of Heme Oxygenase-1 Expression by cAMP-elevating Agents in RAW 264.7 cells

  • Ko, Young-Shin;Park, Min-Kyu;Kang, Young-Jin;Lee, Young-Soo;Seo, Han-Geuk;Lee, Duck-Hyung;Yunchoi, Hye-Sook;Chong, Won-Seog;Chang, Ki-Churl
    • Biomolecules & Therapeutics
    • /
    • v.10 no.2
    • /
    • pp.71-77
    • /
    • 2002
  • Heme oxygenase-1 (HO-1) is the inducible from of the rate-limiting enzyme of heme degradation; it regulates the cellular contents of heme. HO-1 is up-regulated by various stimuli including oxidative stress so that it is thought to participate in general cellular defense mechanisms against oxidative stress in mammalian cells. To investigate the role of the cAMP-dependent protein kinase A (PKA) signaling pathway on nitrogen oxidative stress-induced HO-1 gene expression, RAW 264.7 cell cultures were treated with sodium nitroprusside (SNP). SNP increased the expression of HO-1 mRNA and protein, time- and concentration-dependently. Treatment with H89, PKA inhibitor, but not LY83583, guanylate cyclase inhibitor, significantly diminished the HO-1 expression by SNP, indicating that cAMP plays a crucial role in the induction of HO-1. Incubation with cAMP-elevating agents, such as forskolin or isoproterenol resulted in up-regulation of the expression of HO-1. Forskolin-induced expression of HO-1 was inhibited by H89. Furthermore, propranolol, $\beta$-adrenoceptor blocker, inhibited the isoproterenol-induced HO-1 expression, supporting the importance of cAMP in the induction of HO-1 expression. Higenamine-S, but not higenamineR, enhanced the HO-1 expression induced by SNP. Furthermore, cellular toxicity induced by hydrogen peroxide was attenuated by the presence of SNP, which was further increased by the presence of ZnPPIX, HO-1 inhibitor. Collectively, these results strongly suggest that up-regulation of HO-1 expression in RAW 264.7 cells involves PKA signal pathway.

Cyclic Nucleotide Phosphodiesterase 억제제 및 Spermine의 항혈소판작용에 관한 연구

  • 전보권;최상형;정태옥;조송자;민본홍
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1992.05a
    • /
    • pp.33-33
    • /
    • 1992
  • 항혈전성 약물로서 그의 항 혈소판 작용력은 dipyridamole보다 강하나 심혈관계 등에 대한 부작용이 적어 clinical efficiency가 유의하게 높은 약물개발에 대한 연구는 임상적 응용성 뿐 아니라, 혈소판-응고기전의 규명에 기여할 것으로 사료되는 바 본 연구에서는 cyclic nucleotide phosphodiesterase(PDE-I)들의 항혈소판 작용을 검토하여 그들의 혈관 내피세포와 혈관평활 근세포의 중식에 대한 영향을 항혈소판성 작용을 보이며 혈관세포들의 증식에 없어서는 안되는 spermine의 그것과 비교 검색하였다. Johnson 등(1985)의 방법에 따라서 제조한 aequorin부하-가토혈소판의 thrombin(0.25 units: TB)에 대한 응집반응에서, pyridazinone 유도체인 KR30075, sodium nitroprusside(SNP), imazodan, isobutylmethylxanthine(IBMX), rolipram, 및 spermine의 응집억제성 $IC_{50}$/ (M)은 각각 2.21 $\times$ $10^{-7}$, 1.26 $\times$ $10^{-6}$, 6.96 $\times$ $10^{-6}$, 7.78 $\times$ $10^{-6}$, 8.11 $\times$ $10^{-4}$, 및 4.28 $\times$ $10^{-3}$ M으로써 이들은 TB-응고반응에 동반되는 혈소판 [Ca$^{++}$]$_{i}$-증가에 대한 각각의 $IC_{50}$/과 차이를 보이지 않았으며, 유의한 상관성을 보였다.

  • PDF

A77 1726 Inhibit NO-induced Apoptosis via PI-3K/AKT Signaling Pathway in Rabbit Articular Chondrocyte

  • Choi, In-Kyou;Kim, Song-Ja
    • Biomedical Science Letters
    • /
    • v.15 no.1
    • /
    • pp.61-66
    • /
    • 2009
  • Leflunomide is an immunomodulatory agent used for the treatment of rheumatoid arthritis (RA). Leflunomide known as a regulator of iNOS synthesis which largely decreases NO production in diverse cell type. However, the effect of leflunomide on chondrocyte is still poorly understood. In our previous studies, we have shown that direct production of Nitric oxide (NO) by treating chondrocytes with NO donor, sodium nitroprusside (SNP), causes apoptosis via p38 mitogen-activated protein kinase in association with elevation of p53 protein level, caspase-3 activation. In this study, we characterized the molecular mechanism by which A77 1726 inhibit apoptosis. We found that A77 1726 inhibit NO-induced apoptosis as determined by MTT (Thiazolyl Blue Tetrazolium Bromide) assay and DNA fragmentation. The inhibition of apoptosis by A77 1726 was accompanied by increased PI-3 kinase and AKT activities. So, inhibition of phosphatidylinositol (PI)-3kinase with LY294002 rescued apoptosis. Triciribine, the specific inhibitor of AKT, also abolished anti-apoptotic effect. Our results indicate that A77 1726, the active metabolite of leflunomide, mediates NO-induced apoptosis in chondrocytes by modulating up-regulation of PI-3 kinase and AKT.

  • PDF

Gap Junction Contributions to the Goldfish Electroretinogram at the Photopic Illumination Level

  • Kim, Doh-Yeon;Jung, Chang-Sub
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.16 no.3
    • /
    • pp.219-224
    • /
    • 2012
  • Understanding how the b-wave of the electroretinogram (ERG) is generated by full-field light stimulation is still a challenge in visual neuroscience. To understand more about the origin of the b-wave, we studied the contributions of gap junctions to the ERG b-wave. Many types of retinal neurons are connected to similar and different neighboring neurons through gap junctions. The photopic (cone-dominated) ERG, stimulated by a small light beam, was recorded from goldfish (Carassius auratus) using a corneal electrode. Data were obtained before and after intravitreal injection of agents into the eye under a photopic illumination level. Several agents were used to affect gap junctions, such as dopamine D1 and D2 receptor agonists and antagonists, a nitric oxide (NO) donor, a nitric oxide synthase (NOS) inhibitor, the gap junction blocker meclofenamic acid (MFA), and mixtures of these agents. The ERG b-waves, which were enhanced by MFA, sodium nitroprusside (SNP), SKF 38393, and sulpiride, remained following application of a further injection of a mixture with MFA. The ERG b-waves decreased following $N^G$-nitro-L-arginine methyl ester (L-NAME), SCH 23390, and quinpirole administration but were enhanced by further injection of a mixture with MFA. These results indicate that gap junction activity influences b-waves of the ERG related to NO and dopamine actions.