References
- Anith, K. N., Momol, M. T., Kloepper, J. W., Marios, J. J., Olson, S. M. and Jones, J. B. 2004. Efficacy of plant growth-promoting rhizocbacteria, acibenzolar-S-methyl, and soil amendment for integrated management of bacterial wilt on tomato. Plant Dis. 88:669-673. https://doi.org/10.1094/PDIS.2004.88.6.669
- Boccara, M., Mills, C. E., Zeier, J., Anzi, C., Lamb, C., Poole, R. K. and Delledonne, M. 2005. Flavohaemoglobin HmpX from Erwinia chrysanthemi confers nitrosative stress tolerance and affects plant hypersensitive reaction by intercepting nitric oxide produced by the host. Plant J. 43:226-237. https://doi.org/10.1111/j.1365-313X.2005.02443.x
- Bournonville, C. F. G. and Diaz-Ricci, J. C. 2011. Quantitative determination of superoxide in plant leaves using a modified NBT staining method. Phytochem. Anal. 22:268-271. https://doi.org/10.1002/pca.1275
- Brandes, N., Rinck, A., Leichert, L. I. and Jakob, U. 2007. Nitrosative stress treatment of E. coli targets distinct set of thiolcontaining proteins. Mol. Microbiol. 66:901-914. https://doi.org/10.1111/j.1365-2958.2007.05964.x
- Brown, D. G. and Allen, C. 2004. Ralstonia solanacearum genes induced during growth in tomato: an inside view of bacterial wilt. Mol. Microbiol. 53:1641-1660. https://doi.org/10.1111/j.1365-2958.2004.04237.x
- Byun, H.-J. and Choi, S.-J. 2004. Hydrogen peroxide induces resistance against anthracnose in cucumber (Cucumis sativus). J. Kor. Soc. Hort. Sci. 45:21-26.
- Cerioni, L., Rapisarda, V. A., Hilal, M., Prado, F. E. and Rodriguez-Montelongo, L. 2009. Synergistic antifungal activity of sodium hypochlorite, hydrogen peroxide, and cupric sulfate against Penicillium digitatum. J. Food Protect. 72:1660-1665. https://doi.org/10.4315/0362-028X-72.8.1660
- Choi, H. W., Kim, Y. J., Lee, S. C., Hong, J. K. and Hwang, B. K. 2007. Hydrogen peroxide generation by the pepper extracellular peroxidase CaPO2 activates local and systemic cell death and defense response to bacterial pathogens. Plant Physiol. 145:890-904. https://doi.org/10.1104/pp.107.103325
- Chun, H. J., Park, H. C., Koo, S. C., Lee, J. H., Park, C. Y., Choi, M. S., Kang, C. H., Baek, D., Cheong, Y. H., Yun, D.-J., Chung, W. S., Cho, M. J. and Kim, M. C. 2012. Constitutive expression of mammalian nitric oxide synthase in tobacco plants triggers disease resistance to pathogens. Mol. Cells 34:463-471. https://doi.org/10.1007/s10059-012-0213-0
- Colburn-Clifford, J. M., Scherf, J. M. and Allen, C. 2010. Ralstonia solanacearum Dps contributes to oxidative stress tolerance and to colonization of and virulence on tomato plants. Appl. Environ. Microbiol. 76:7392-7399. https://doi.org/10.1128/AEM.01742-10
- Deepak, S., Shailasree, S., Kini, R. K., Muck, A., Mithofer, A. and Shetty, S. H. 2010. Hydroxyproline-rich proteins and plant defence. J. Phytopathol. 158:585-593.
- Deighton, N., Muckenschnabel, I., Goodman, B. A. and Williamson, B. 1999. Lipid peroxidation and the oxidative burst associated with infection of Capsicum annuum by Botrytis cinerea. Plant J. 20:485-492. https://doi.org/10.1046/j.1365-313x.1999.00622.x
- El-Mougy, N. S., El-Gamal, N. G. and Abdalla, M. A. 2008. The use of fungicide alternatives for controlling postharvest decay of strawberry and orange fruits. J. Plant Protect. Res. 48:385-395.
- Enfinger, J. M., McCarter, S. M. and Jaworski, C. A. 1979. Evaluation of chemicals and application methods for control of bacterial wilt of tomato transplants. Phytopathology 69:637-640. https://doi.org/10.1094/Phyto-69-637
- Flores-Cruz, Z. and Allen, C. 2009. Ralstonia solanacearum encounters an oxidative environment during tomato infection. Mol. Plant-Microbe Interact. 22:773-782. https://doi.org/10.1094/MPMI-22-7-0773
- Flores-Cruz, Z. and Allen, C. 2011. Necessity of OxyR for the hydrogen peroxide stress response and full virulence in Ralstonia solanacearum. Appl. Environ. Microbiol. 77:6426-6432. https://doi.org/10.1128/AEM.05813-11
- Franks, A., Mark-Byrne, G. L., Dow, J. M. and O'Gara, F. 2008. A putative RNA-binding protein has a role in virulence in Ralstonia solanacearum GMI1000. Mol. Plant Pathol. 9:67-72.
- Fu, L.-J., Shi, K., Gu, M., Zhou, Y.-H., Dong, D.-K., Liang, W.-S., Song, F.-M. and Yu, J.-Q. 2010. Systemic induction and role of mitochondrial alternative oxidase and nitric oxide in a compatible tomato-Tobacco mosaic virus interaction. Mol. Plant-Microbe Interact. 23:39-48. https://doi.org/10.1094/MPMI-23-1-0039
- Genin, S. 2010. Molecular traits controlling host range and adaptation to plants in Ralstonia solanacearum. New Phytol. 187:920-928. https://doi.org/10.1111/j.1469-8137.2010.03397.x
- Gou, M., Block, A., Bryan, C. D., Becker, D. F. and Alfano, J. R. 2012. Pseudomonas syringae catalases are collectively required for plant pathogenesis. J. Bacteriol. 194:5054-5056. https://doi.org/10.1128/JB.00999-12
- Guo, P., Cao, Y. , Li, Z. and Zhao, B. 2004. Role of endogenous nitric oxide burst in the resistance of wheat to stripe rust. Plant Cell Environ. 27:473-477. https://doi.org/10.1111/j.1365-3040.2003.01165.x
- Grant, M and Lamb, C. 2006. Systemic immunity. Curr. Opin. Plant Biol. 9:414-420. https://doi.org/10.1016/j.pbi.2006.05.013
- Greenberg, J. T. and Yao, N. 2004. The role and regulation of programmed cell death in plant-pathogen interactions. Cell. Microbiol. 6:201-211. https://doi.org/10.1111/j.1462-5822.2004.00361.x
-
Hafez, Y. M., Bacso, R., Kiraly, Z., Kunstler, A. and Kiraly, L. 2012. Up-regulation of antioxidants in tobacco by low concentrations of
$H_2O_2$ suppresses necrotic disease symptoms. Phytopathology 102:848-856. https://doi.org/10.1094/PHYTO-01-12-0012-R - Hayward, A. C. 1991. Biology and epidemiology of bacterial wilt caused by Pseudomonas solanacearum. Annu. Rev. Phytopathol. 29:65-87. https://doi.org/10.1146/annurev.py.29.090191.000433
- Huang, K., Czymmek, K. J., Caplan, J. L., Sweigard, J. A. and Donofrio, N. M. 2011. HYR1-mediated detoxification of reactive oxygen species is required for full virulence in the rice blast fungus. PLoS Pathog. 7:e1001335. https://doi.org/10.1371/journal.ppat.1001335
- Ishikawa, R., Fujimori, K. and Matsuura, K. 1996. Antibacterial activity of validamycin A against Pseudomonas solanacearum and its efficacy against tomato bacterial wilt. Ann. Phytopathol. Soc. Jpn. 62:478-482. https://doi.org/10.3186/jjphytopath.62.478
- Jalloul, A., Montillet, J. L., Assigbetse, K., Agnel, J. P., Delannoy, E., Triantaphylides, C., Daniel, J. F., Marmey, P., Geiger, J. P. and Nicole, M. 2002. Lipid peroxidation in cotton: Xanthomonas interactions and the role of lipoxygenases during the hypersensitive reaction. Plant J. 32:1-12. https://doi.org/10.1046/j.1365-313X.2002.01393.x
- Ji, P., Momol, M. T., Olson, S. M., Pradhanang, P. M. and Jones, J. B. 2005. Evaluation of thymol as biofumigant for control of bacterial wilt of tomato under field conditions. Plant Dis. 89:497-500. https://doi.org/10.1094/PD-89-0497
-
Jittawuttipoka, T., Buranajitpakorn, S., Vattanaviboon, P. and Mongkolsuk, S. 2009. The catalase-peroxidase KatG is required for virulence of Xanthomonas campestris pv. campestris in a host plant by providing protection against low levels of
$H_2O_2$ . J. Bacteriol. 191:7372-7377. https://doi.org/10.1128/JB.00788-09 - Kamilova, F., Kravchenko, L. V., Shaposhnikov, A. I., Azarova, T., Makarova, N. and Lugtenberg, B. 2006. Organic acids, sugars, and L-tryptophane in exudates of vegetables growing on stonewool and their effects on activities of rhizosphere bacteria. Mol. Plant-Microbe Interact. 19:250-256. https://doi.org/10.1094/MPMI-19-0250
- Koornneef, A. and Pieterse, C. M. J. 2008. Cross talk in defense signaling. Plant Physiol. 146:839-844. https://doi.org/10.1104/pp.107.112029
- Kotchoni, O. S., Torimiro, N. and Gachomo, E. W. 2007. Control of Xanthomonas campestris pv. vignicola in cowpea following seed and seedling treatment with hydrogen peroxide and Nheterocyclic pyridinium chlorochromate. J. Plant Pathol. 89:361-367.
- Lai, T., Wang, Y., Li, B., Qin, G and Tian, S. 2011. Defense responses to tomato fruit to exogenous nitric oxide during postharvest storage. Postharvest Biol. Technol. 62:127-132. https://doi.org/10.1016/j.postharvbio.2011.05.011
- Lamb, C. and Dixon, R. A. 1997. The oxidative burst in plant disease resistance. Annu. Rev. Plant Physiol. Plant Mol. Biol. 48:251-275. https://doi.org/10.1146/annurev.arplant.48.1.251
- Larsen, B. and White, S. 1995. Antifungal effect of hydrogen peroxide on catalase-producing strains of Candida spp.. Infect. Dis. Obstet. Gynecol. 3:73-78. https://doi.org/10.1155/S1064744995000354
- Lazar, E. E., Wills, R. B. H., Ho, B. T., Harris, A. M. and Spohr, L. J. 2008. Antifungal effect of gaseous nitric oxide on mycelium growth, sporulation and spore germination of the postharvest horticulture pathogens, Aspergillus niger, Monilinia fructicola and Penicllium italicum. Lett. Appl. Microbiol. 46:688-692. https://doi.org/10.1111/j.1472-765X.2008.02373.x
- Lee, Y. H., Choi, C. W., Kim, S. H., Yun, J. G., Chang, S. W., Kim, Y. S. and Hong, J. K. 2012. Chemical pesticides and plant essential oils for disease control of tomato bacterial wilt. Plant Pathol. J. 28:32-39. https://doi.org/10.5423/PPJ.OA.10.2011.0200
- Liu, P.-P., von Dahl, C. C., Park, S.-W. and Klessig, D. F. 2011. Interconnection between methyl salicylate and lipid-based long-distance signaling during the development of systemic acquired resistance in Arabidopsis and tobacco. Plant Physiol. 155:1762-1768. https://doi.org/10.1104/pp.110.171694
- Loprasert, S., Vattanaviboon, P., Praituan, W., Chamnongpol, S. and Mongkolsuk, S. 1996. Regulation of the oxidative stress protective enzymes, catalase and superoxide dismutase in Xanthomonas - A review. Gene 179:33-37. https://doi.org/10.1016/S0378-1119(96)00427-1
- Lugtenberg, B. J. J., Kravchenko, L. V. and Simons, M. 1999. Tomato seed and root exudates sugars: composition, utilization by Pseudomonas biocontrol strains and role in rhizosphere colonization. Environ. Microbiol. 1:439-446. https://doi.org/10.1046/j.1462-2920.1999.00054.x
- Macarisin, D., Cohen, L., Eick, A., Rafael, G., Belausov, E., Wisniewski, M. and Droby, S. 2007. Penicillium digitatum suppresses production of hydrogen peroxide in host tissue during infection of citrus fruit. Phytopathology 97:1491-1500. https://doi.org/10.1094/PHYTO-97-11-1491
- Macho, A. P., Guidot, A., Barberis, P., Beuzon, C. R. and Genin, S. 2010. A competitive index assay identifies several Ralstonia solanacearum type III effectors mutant strains with reduced fitness in host plants. Mol. Plant-Microbe Interact. 23:1197-1205. https://doi.org/10.1094/MPMI-23-9-1197
- Mandal, S., Das, R. K. and Mishra, S. 2011. Differential occurrence of oxidative burst and antioxidative mechanism in compatible and incompatible interactions of Solanum lycopersicum and Ralstonia solanacearum. Plant Physiol. Biochem. 49:117-123. https://doi.org/10.1016/j.plaphy.2010.10.006
- Nakaune, M., Tsukazawa, K., Uga, H., Asamizu, E., Imanishi, S., Matsukura, C. and Ezura, H. 2012. Low sodium chloride priming increases seedling vigor and stress tolerance to Ralstonia solanacearum in tomato. Plant Biotechnol. 29:9-18. https://doi.org/10.5511/plantbiotechnology.11.1122a
- Nguyen, M. T. and Ranamukhaarachichi, S. L. 2010. Soil-borne antagonists for biological control of bacterial wilt disease caused by Ralstonia solanacearum in tomato and pepper. J. Plant Pathol. 92:395-406.
- Pacelli, R., Wink, D. A., Cook, J. A., Krishna, M. C., DeGraff, W., Friedman, N., Tsokos, M., Samuni, A. and Mitchell, J. B. 1995. Nitric oxide potentiates hydrogen peroxide-induced killing of Escherichia coli. J. Exp. Med. 182:1469-1479. https://doi.org/10.1084/jem.182.5.1469
- Park, K., Paul, D., Kim, Y. K., Nam, K. W., Lee, Y. K., Choi, H. W. and Lee, S. Y. 2007. Induced systemic resistance by Bacillus vallismortis EXTN-1 suppressed bacterial wilt in tomato caused by Ralstonia solanacearum. Plant Pathol. J. 23:22-25. https://doi.org/10.5423/PPJ.2007.23.1.022
- Peng, M. and Ku , J. 1992. Peroxidase-generated hydrogen peroxide as a source of antifungal activity in vitro and on tobacco leaf disks. Phytopathology 82:696−699. https://doi.org/10.1094/Phyto-82-696
- Pieterse, C. M. J., Leon-Reyes, A., van der Ent, S. and van Wees, S. C. M. 2009. Networking by small-molecule hormones in plant immunity. Nat. Chem. Biol. 5:308-316. https://doi.org/10.1038/nchembio.164
- Saile, E., McGarvey, J. A., Schell, M. A. and Denny, T. P. 1997. Role of extracellular polysaccharide and endoglucanase in root invasion and colonization of tomato plants by Ralstonia solanacearum. Phytopathology 87:1264-1271. https://doi.org/10.1094/PHYTO.1997.87.12.1264
- Schell, M. A. 2000. Control of virulence and pathogenicity genes of Ralstonia solanacearum by an elaborate sensory network. Annu. Rev. Phytopathol. 38:263-292. https://doi.org/10.1146/annurev.phyto.38.1.263
-
Thordal-Christensen, H., Zhang, Z., Wei, Y. and Collinge, D. B. 1997. Subcellular localization of
$H_2O_2$ in plants:$H_2O_2$ accumulation in papillae and hypersensitive response during the barley-powdery mildew interaction. Plant J. 11:1187-1194. https://doi.org/10.1046/j.1365-313X.1997.11061187.x - Valls, M., Genin, S. and Boucher, C. 2006. Integrated regulation of the type III secretion system and other virulence determi-nants in Ralstonia solanacearum. PLoS Pathog. 2:e82. https://doi.org/10.1371/journal.ppat.0020082
- van Loon, L. C., Rep, M. and Pieterse, C. M. J. 2006. Significance of inducible defense-related proteins in infected plants. Annu. Rev. Phytopathol. 44:135-162. https://doi.org/10.1146/annurev.phyto.44.070505.143425
-
Wang, C.-F., Huang, L.-L., Buchenauer, H., Han, Q.-M., Zhang, H.-C. and Kang, Z.-S. 2007. Histochemical studies on the accumulation of reactive oxygen species (
$O_2^-$ and$H_2O_2$ ) in the incompatible and compatible interaction of wheat-Puccinia striiformis f. sp. tritici. Physiol. Mol. Plant Pathol. 71:230-239. https://doi.org/10.1016/j.pmpp.2008.02.006 - Wang, Y.-S. and Yang, Z.-M. 2005. Nitric oxide reduces aluminum toxicity by preventing oxidative stress in the roots of Cassia tora L.. Plant Cell Physiol. 46:1915-1923. https://doi.org/10.1093/pcp/pci202
- Wang, Y., Yang, Q., Tosa, Y., Nakayashiki, H. and Mayama, S. 2005. Nitric oxide-overproducing transformants of Pseudomonas fluorescens with enhanced biocontrol of tomato bacterial wilt. J. Gen. Plant Pathol. 71:33-38. https://doi.org/10.1007/s10327-004-0157-0
Cited by
- ABA Suppresses Botrytis cinerea Elicited NO Production in Tomato to Influence H2O2 Generation and Increase Host Susceptibility vol.7, 2016, https://doi.org/10.3389/fpls.2016.00709
- Mechanism of Penicillium expansum in response to exogenous nitric oxide based on proteomics analysis vol.103, 2014, https://doi.org/10.1016/j.jprot.2014.03.012
- Differential Control Efficacies of Vitamin Treatments against Bacterial Wilt and Grey Mould Diseases in Tomato Plants vol.32, pp.5, 2016, https://doi.org/10.5423/PPJ.OA.03.2016.0076
- CATALASE2 Coordinates SA-Mediated Repression of Both Auxin Accumulation and JA Biosynthesis in Plant Defenses vol.21, pp.2, 2017, https://doi.org/10.1016/j.chom.2017.01.007
- Lack of a Cytoplasmic RLK, Required for ROS Homeostasis, Induces Strong Resistance to Bacterial Leaf Blight in Rice vol.9, pp.1664-462X, 2018, https://doi.org/10.3389/fpls.2018.00577