DOI QR코드

DOI QR Code

Hydrogen Peroxide- and Nitric Oxide-mediated Disease Control of Bacterial Wilt in Tomato Plants

  • Hong, Jeum Kyu (Department of Horticultural Science, Gyeongnam National University of Science and Technology (GNTech)) ;
  • Kang, Su Ran (Department of Horticultural Science, Gyeongnam National University of Science and Technology (GNTech)) ;
  • Kim, Yeon Hwa (Department of Horticultural Science, Gyeongnam National University of Science and Technology (GNTech)) ;
  • Yoon, Dong June (Department of Horticultural Science, Gyeongnam National University of Science and Technology (GNTech)) ;
  • Kim, Do Hoon (Department of Horticultural Science, Gyeongnam National University of Science and Technology (GNTech)) ;
  • Kim, Hyeon Ji (Department of Horticultural Science, Gyeongnam National University of Science and Technology (GNTech)) ;
  • Sung, Chang Hyun (Department of Horticultural Science, Gyeongnam National University of Science and Technology (GNTech)) ;
  • Kang, Han Sol (Department of Horticultural Science, Gyeongnam National University of Science and Technology (GNTech)) ;
  • Choi, Chang Won (Department of Biology and Medical Science, Paichai University) ;
  • Kim, Seong Hwan (Department of Microbiology and Institute of Basic Sciences, Dankook University) ;
  • Kim, Young Shik (Department of Plant Science and Food Biotechnology, Sangmyung University)
  • Received : 2013.04.23
  • Accepted : 2013.08.23
  • Published : 2013.12.01

Abstract

Reactive oxygen species (ROS) generation in tomato plants by Ralstonia solanacearum infection and the role of hydrogen peroxide ($H_2O_2$) and nitric oxide in tomato bacterial wilt control were demonstrated. During disease development of tomato bacterial wilt, accumulation of superoxide anion ($O_2{^-}$) and $H_2O_2$ was observed and lipid peroxidation also occurred in the tomato leaf tissues. High doses of $H_2O_2$ and sodium nitroprusside (SNP) nitric oxide donor showed phytotoxicity to detached tomato leaves 1 day after petiole feeding showing reduced fresh weight. Both $H_2O_2$ and SNP have in vitro antibacterial activities against R. solanacearum in a dose-dependent manner, as well as plant protection in detached tomato leaves against bacterial wilt by $10^6$ and $10^7$ cfu/ml of R. solanacearum. $H_2O_2$- and SNP-mediated protection was also evaluated in pots using soil-drench treatment with the bacterial inoculation, and relative 'area under the disease progressive curve (AUDPC)' was calculated to compare disease protection by $H_2O_2$ and/or SNP with untreated control. Neither $H_2O_2$ nor SNP protect the tomato seedlings from the bacterial wilt, but $H_2O_2$ + SNP mixture significantly decreased disease severity with reduced relative AUDPC. These results suggest that $H_2O_2$ and SNP could be used together to control bacterial wilt in tomato plants as bactericidal agents.

Keywords

References

  1. Anith, K. N., Momol, M. T., Kloepper, J. W., Marios, J. J., Olson, S. M. and Jones, J. B. 2004. Efficacy of plant growth-promoting rhizocbacteria, acibenzolar-S-methyl, and soil amendment for integrated management of bacterial wilt on tomato. Plant Dis. 88:669-673. https://doi.org/10.1094/PDIS.2004.88.6.669
  2. Boccara, M., Mills, C. E., Zeier, J., Anzi, C., Lamb, C., Poole, R. K. and Delledonne, M. 2005. Flavohaemoglobin HmpX from Erwinia chrysanthemi confers nitrosative stress tolerance and affects plant hypersensitive reaction by intercepting nitric oxide produced by the host. Plant J. 43:226-237. https://doi.org/10.1111/j.1365-313X.2005.02443.x
  3. Bournonville, C. F. G. and Diaz-Ricci, J. C. 2011. Quantitative determination of superoxide in plant leaves using a modified NBT staining method. Phytochem. Anal. 22:268-271. https://doi.org/10.1002/pca.1275
  4. Brandes, N., Rinck, A., Leichert, L. I. and Jakob, U. 2007. Nitrosative stress treatment of E. coli targets distinct set of thiolcontaining proteins. Mol. Microbiol. 66:901-914. https://doi.org/10.1111/j.1365-2958.2007.05964.x
  5. Brown, D. G. and Allen, C. 2004. Ralstonia solanacearum genes induced during growth in tomato: an inside view of bacterial wilt. Mol. Microbiol. 53:1641-1660. https://doi.org/10.1111/j.1365-2958.2004.04237.x
  6. Byun, H.-J. and Choi, S.-J. 2004. Hydrogen peroxide induces resistance against anthracnose in cucumber (Cucumis sativus). J. Kor. Soc. Hort. Sci. 45:21-26.
  7. Cerioni, L., Rapisarda, V. A., Hilal, M., Prado, F. E. and Rodriguez-Montelongo, L. 2009. Synergistic antifungal activity of sodium hypochlorite, hydrogen peroxide, and cupric sulfate against Penicillium digitatum. J. Food Protect. 72:1660-1665. https://doi.org/10.4315/0362-028X-72.8.1660
  8. Choi, H. W., Kim, Y. J., Lee, S. C., Hong, J. K. and Hwang, B. K. 2007. Hydrogen peroxide generation by the pepper extracellular peroxidase CaPO2 activates local and systemic cell death and defense response to bacterial pathogens. Plant Physiol. 145:890-904. https://doi.org/10.1104/pp.107.103325
  9. Chun, H. J., Park, H. C., Koo, S. C., Lee, J. H., Park, C. Y., Choi, M. S., Kang, C. H., Baek, D., Cheong, Y. H., Yun, D.-J., Chung, W. S., Cho, M. J. and Kim, M. C. 2012. Constitutive expression of mammalian nitric oxide synthase in tobacco plants triggers disease resistance to pathogens. Mol. Cells 34:463-471. https://doi.org/10.1007/s10059-012-0213-0
  10. Colburn-Clifford, J. M., Scherf, J. M. and Allen, C. 2010. Ralstonia solanacearum Dps contributes to oxidative stress tolerance and to colonization of and virulence on tomato plants. Appl. Environ. Microbiol. 76:7392-7399. https://doi.org/10.1128/AEM.01742-10
  11. Deepak, S., Shailasree, S., Kini, R. K., Muck, A., Mithofer, A. and Shetty, S. H. 2010. Hydroxyproline-rich proteins and plant defence. J. Phytopathol. 158:585-593.
  12. Deighton, N., Muckenschnabel, I., Goodman, B. A. and Williamson, B. 1999. Lipid peroxidation and the oxidative burst associated with infection of Capsicum annuum by Botrytis cinerea. Plant J. 20:485-492. https://doi.org/10.1046/j.1365-313x.1999.00622.x
  13. El-Mougy, N. S., El-Gamal, N. G. and Abdalla, M. A. 2008. The use of fungicide alternatives for controlling postharvest decay of strawberry and orange fruits. J. Plant Protect. Res. 48:385-395.
  14. Enfinger, J. M., McCarter, S. M. and Jaworski, C. A. 1979. Evaluation of chemicals and application methods for control of bacterial wilt of tomato transplants. Phytopathology 69:637-640. https://doi.org/10.1094/Phyto-69-637
  15. Flores-Cruz, Z. and Allen, C. 2009. Ralstonia solanacearum encounters an oxidative environment during tomato infection. Mol. Plant-Microbe Interact. 22:773-782. https://doi.org/10.1094/MPMI-22-7-0773
  16. Flores-Cruz, Z. and Allen, C. 2011. Necessity of OxyR for the hydrogen peroxide stress response and full virulence in Ralstonia solanacearum. Appl. Environ. Microbiol. 77:6426-6432. https://doi.org/10.1128/AEM.05813-11
  17. Franks, A., Mark-Byrne, G. L., Dow, J. M. and O'Gara, F. 2008. A putative RNA-binding protein has a role in virulence in Ralstonia solanacearum GMI1000. Mol. Plant Pathol. 9:67-72.
  18. Fu, L.-J., Shi, K., Gu, M., Zhou, Y.-H., Dong, D.-K., Liang, W.-S., Song, F.-M. and Yu, J.-Q. 2010. Systemic induction and role of mitochondrial alternative oxidase and nitric oxide in a compatible tomato-Tobacco mosaic virus interaction. Mol. Plant-Microbe Interact. 23:39-48. https://doi.org/10.1094/MPMI-23-1-0039
  19. Genin, S. 2010. Molecular traits controlling host range and adaptation to plants in Ralstonia solanacearum. New Phytol. 187:920-928. https://doi.org/10.1111/j.1469-8137.2010.03397.x
  20. Gou, M., Block, A., Bryan, C. D., Becker, D. F. and Alfano, J. R. 2012. Pseudomonas syringae catalases are collectively required for plant pathogenesis. J. Bacteriol. 194:5054-5056. https://doi.org/10.1128/JB.00999-12
  21. Guo, P., Cao, Y. , Li, Z. and Zhao, B. 2004. Role of endogenous nitric oxide burst in the resistance of wheat to stripe rust. Plant Cell Environ. 27:473-477. https://doi.org/10.1111/j.1365-3040.2003.01165.x
  22. Grant, M and Lamb, C. 2006. Systemic immunity. Curr. Opin. Plant Biol. 9:414-420. https://doi.org/10.1016/j.pbi.2006.05.013
  23. Greenberg, J. T. and Yao, N. 2004. The role and regulation of programmed cell death in plant-pathogen interactions. Cell. Microbiol. 6:201-211. https://doi.org/10.1111/j.1462-5822.2004.00361.x
  24. Hafez, Y. M., Bacso, R., Kiraly, Z., Kunstler, A. and Kiraly, L. 2012. Up-regulation of antioxidants in tobacco by low concentrations of $H_2O_2$ suppresses necrotic disease symptoms. Phytopathology 102:848-856. https://doi.org/10.1094/PHYTO-01-12-0012-R
  25. Hayward, A. C. 1991. Biology and epidemiology of bacterial wilt caused by Pseudomonas solanacearum. Annu. Rev. Phytopathol. 29:65-87. https://doi.org/10.1146/annurev.py.29.090191.000433
  26. Huang, K., Czymmek, K. J., Caplan, J. L., Sweigard, J. A. and Donofrio, N. M. 2011. HYR1-mediated detoxification of reactive oxygen species is required for full virulence in the rice blast fungus. PLoS Pathog. 7:e1001335. https://doi.org/10.1371/journal.ppat.1001335
  27. Ishikawa, R., Fujimori, K. and Matsuura, K. 1996. Antibacterial activity of validamycin A against Pseudomonas solanacearum and its efficacy against tomato bacterial wilt. Ann. Phytopathol. Soc. Jpn. 62:478-482. https://doi.org/10.3186/jjphytopath.62.478
  28. Jalloul, A., Montillet, J. L., Assigbetse, K., Agnel, J. P., Delannoy, E., Triantaphylides, C., Daniel, J. F., Marmey, P., Geiger, J. P. and Nicole, M. 2002. Lipid peroxidation in cotton: Xanthomonas interactions and the role of lipoxygenases during the hypersensitive reaction. Plant J. 32:1-12. https://doi.org/10.1046/j.1365-313X.2002.01393.x
  29. Ji, P., Momol, M. T., Olson, S. M., Pradhanang, P. M. and Jones, J. B. 2005. Evaluation of thymol as biofumigant for control of bacterial wilt of tomato under field conditions. Plant Dis. 89:497-500. https://doi.org/10.1094/PD-89-0497
  30. Jittawuttipoka, T., Buranajitpakorn, S., Vattanaviboon, P. and Mongkolsuk, S. 2009. The catalase-peroxidase KatG is required for virulence of Xanthomonas campestris pv. campestris in a host plant by providing protection against low levels of $H_2O_2$. J. Bacteriol. 191:7372-7377. https://doi.org/10.1128/JB.00788-09
  31. Kamilova, F., Kravchenko, L. V., Shaposhnikov, A. I., Azarova, T., Makarova, N. and Lugtenberg, B. 2006. Organic acids, sugars, and L-tryptophane in exudates of vegetables growing on stonewool and their effects on activities of rhizosphere bacteria. Mol. Plant-Microbe Interact. 19:250-256. https://doi.org/10.1094/MPMI-19-0250
  32. Koornneef, A. and Pieterse, C. M. J. 2008. Cross talk in defense signaling. Plant Physiol. 146:839-844. https://doi.org/10.1104/pp.107.112029
  33. Kotchoni, O. S., Torimiro, N. and Gachomo, E. W. 2007. Control of Xanthomonas campestris pv. vignicola in cowpea following seed and seedling treatment with hydrogen peroxide and Nheterocyclic pyridinium chlorochromate. J. Plant Pathol. 89:361-367.
  34. Lai, T., Wang, Y., Li, B., Qin, G and Tian, S. 2011. Defense responses to tomato fruit to exogenous nitric oxide during postharvest storage. Postharvest Biol. Technol. 62:127-132. https://doi.org/10.1016/j.postharvbio.2011.05.011
  35. Lamb, C. and Dixon, R. A. 1997. The oxidative burst in plant disease resistance. Annu. Rev. Plant Physiol. Plant Mol. Biol. 48:251-275. https://doi.org/10.1146/annurev.arplant.48.1.251
  36. Larsen, B. and White, S. 1995. Antifungal effect of hydrogen peroxide on catalase-producing strains of Candida spp.. Infect. Dis. Obstet. Gynecol. 3:73-78. https://doi.org/10.1155/S1064744995000354
  37. Lazar, E. E., Wills, R. B. H., Ho, B. T., Harris, A. M. and Spohr, L. J. 2008. Antifungal effect of gaseous nitric oxide on mycelium growth, sporulation and spore germination of the postharvest horticulture pathogens, Aspergillus niger, Monilinia fructicola and Penicllium italicum. Lett. Appl. Microbiol. 46:688-692. https://doi.org/10.1111/j.1472-765X.2008.02373.x
  38. Lee, Y. H., Choi, C. W., Kim, S. H., Yun, J. G., Chang, S. W., Kim, Y. S. and Hong, J. K. 2012. Chemical pesticides and plant essential oils for disease control of tomato bacterial wilt. Plant Pathol. J. 28:32-39. https://doi.org/10.5423/PPJ.OA.10.2011.0200
  39. Liu, P.-P., von Dahl, C. C., Park, S.-W. and Klessig, D. F. 2011. Interconnection between methyl salicylate and lipid-based long-distance signaling during the development of systemic acquired resistance in Arabidopsis and tobacco. Plant Physiol. 155:1762-1768. https://doi.org/10.1104/pp.110.171694
  40. Loprasert, S., Vattanaviboon, P., Praituan, W., Chamnongpol, S. and Mongkolsuk, S. 1996. Regulation of the oxidative stress protective enzymes, catalase and superoxide dismutase in Xanthomonas - A review. Gene 179:33-37. https://doi.org/10.1016/S0378-1119(96)00427-1
  41. Lugtenberg, B. J. J., Kravchenko, L. V. and Simons, M. 1999. Tomato seed and root exudates sugars: composition, utilization by Pseudomonas biocontrol strains and role in rhizosphere colonization. Environ. Microbiol. 1:439-446. https://doi.org/10.1046/j.1462-2920.1999.00054.x
  42. Macarisin, D., Cohen, L., Eick, A., Rafael, G., Belausov, E., Wisniewski, M. and Droby, S. 2007. Penicillium digitatum suppresses production of hydrogen peroxide in host tissue during infection of citrus fruit. Phytopathology 97:1491-1500. https://doi.org/10.1094/PHYTO-97-11-1491
  43. Macho, A. P., Guidot, A., Barberis, P., Beuzon, C. R. and Genin, S. 2010. A competitive index assay identifies several Ralstonia solanacearum type III effectors mutant strains with reduced fitness in host plants. Mol. Plant-Microbe Interact. 23:1197-1205. https://doi.org/10.1094/MPMI-23-9-1197
  44. Mandal, S., Das, R. K. and Mishra, S. 2011. Differential occurrence of oxidative burst and antioxidative mechanism in compatible and incompatible interactions of Solanum lycopersicum and Ralstonia solanacearum. Plant Physiol. Biochem. 49:117-123. https://doi.org/10.1016/j.plaphy.2010.10.006
  45. Nakaune, M., Tsukazawa, K., Uga, H., Asamizu, E., Imanishi, S., Matsukura, C. and Ezura, H. 2012. Low sodium chloride priming increases seedling vigor and stress tolerance to Ralstonia solanacearum in tomato. Plant Biotechnol. 29:9-18. https://doi.org/10.5511/plantbiotechnology.11.1122a
  46. Nguyen, M. T. and Ranamukhaarachichi, S. L. 2010. Soil-borne antagonists for biological control of bacterial wilt disease caused by Ralstonia solanacearum in tomato and pepper. J. Plant Pathol. 92:395-406.
  47. Pacelli, R., Wink, D. A., Cook, J. A., Krishna, M. C., DeGraff, W., Friedman, N., Tsokos, M., Samuni, A. and Mitchell, J. B. 1995. Nitric oxide potentiates hydrogen peroxide-induced killing of Escherichia coli. J. Exp. Med. 182:1469-1479. https://doi.org/10.1084/jem.182.5.1469
  48. Park, K., Paul, D., Kim, Y. K., Nam, K. W., Lee, Y. K., Choi, H. W. and Lee, S. Y. 2007. Induced systemic resistance by Bacillus vallismortis EXTN-1 suppressed bacterial wilt in tomato caused by Ralstonia solanacearum. Plant Pathol. J. 23:22-25. https://doi.org/10.5423/PPJ.2007.23.1.022
  49. Peng, M. and Ku , J. 1992. Peroxidase-generated hydrogen peroxide as a source of antifungal activity in vitro and on tobacco leaf disks. Phytopathology 82:696−699. https://doi.org/10.1094/Phyto-82-696
  50. Pieterse, C. M. J., Leon-Reyes, A., van der Ent, S. and van Wees, S. C. M. 2009. Networking by small-molecule hormones in plant immunity. Nat. Chem. Biol. 5:308-316. https://doi.org/10.1038/nchembio.164
  51. Saile, E., McGarvey, J. A., Schell, M. A. and Denny, T. P. 1997. Role of extracellular polysaccharide and endoglucanase in root invasion and colonization of tomato plants by Ralstonia solanacearum. Phytopathology 87:1264-1271. https://doi.org/10.1094/PHYTO.1997.87.12.1264
  52. Schell, M. A. 2000. Control of virulence and pathogenicity genes of Ralstonia solanacearum by an elaborate sensory network. Annu. Rev. Phytopathol. 38:263-292. https://doi.org/10.1146/annurev.phyto.38.1.263
  53. Thordal-Christensen, H., Zhang, Z., Wei, Y. and Collinge, D. B. 1997. Subcellular localization of $H_2O_2$ in plants: $H_2O_2$ accumulation in papillae and hypersensitive response during the barley-powdery mildew interaction. Plant J. 11:1187-1194. https://doi.org/10.1046/j.1365-313X.1997.11061187.x
  54. Valls, M., Genin, S. and Boucher, C. 2006. Integrated regulation of the type III secretion system and other virulence determi-nants in Ralstonia solanacearum. PLoS Pathog. 2:e82. https://doi.org/10.1371/journal.ppat.0020082
  55. van Loon, L. C., Rep, M. and Pieterse, C. M. J. 2006. Significance of inducible defense-related proteins in infected plants. Annu. Rev. Phytopathol. 44:135-162. https://doi.org/10.1146/annurev.phyto.44.070505.143425
  56. Wang, C.-F., Huang, L.-L., Buchenauer, H., Han, Q.-M., Zhang, H.-C. and Kang, Z.-S. 2007. Histochemical studies on the accumulation of reactive oxygen species ($O_2^-$ and $H_2O_2$) in the incompatible and compatible interaction of wheat-Puccinia striiformis f. sp. tritici. Physiol. Mol. Plant Pathol. 71:230-239. https://doi.org/10.1016/j.pmpp.2008.02.006
  57. Wang, Y.-S. and Yang, Z.-M. 2005. Nitric oxide reduces aluminum toxicity by preventing oxidative stress in the roots of Cassia tora L.. Plant Cell Physiol. 46:1915-1923. https://doi.org/10.1093/pcp/pci202
  58. Wang, Y., Yang, Q., Tosa, Y., Nakayashiki, H. and Mayama, S. 2005. Nitric oxide-overproducing transformants of Pseudomonas fluorescens with enhanced biocontrol of tomato bacterial wilt. J. Gen. Plant Pathol. 71:33-38. https://doi.org/10.1007/s10327-004-0157-0

Cited by

  1. ABA Suppresses Botrytis cinerea Elicited NO Production in Tomato to Influence H2O2 Generation and Increase Host Susceptibility vol.7, 2016, https://doi.org/10.3389/fpls.2016.00709
  2. Mechanism of Penicillium expansum in response to exogenous nitric oxide based on proteomics analysis vol.103, 2014, https://doi.org/10.1016/j.jprot.2014.03.012
  3. Differential Control Efficacies of Vitamin Treatments against Bacterial Wilt and Grey Mould Diseases in Tomato Plants vol.32, pp.5, 2016, https://doi.org/10.5423/PPJ.OA.03.2016.0076
  4. CATALASE2 Coordinates SA-Mediated Repression of Both Auxin Accumulation and JA Biosynthesis in Plant Defenses vol.21, pp.2, 2017, https://doi.org/10.1016/j.chom.2017.01.007
  5. Lack of a Cytoplasmic RLK, Required for ROS Homeostasis, Induces Strong Resistance to Bacterial Leaf Blight in Rice vol.9, pp.1664-462X, 2018, https://doi.org/10.3389/fpls.2018.00577