• Title/Summary/Keyword: Sodium ion

Search Result 625, Processing Time 0.028 seconds

Preparation and Interface Properties of Colloidal Silica (콜로이드 실리카의 제조 및 계면특성)

  • Lee, Han Chul;Kim, Jong Hyub;Chang, Yoon Ho
    • Applied Chemistry for Engineering
    • /
    • v.17 no.4
    • /
    • pp.386-390
    • /
    • 2006
  • Colloidal silica which has high surface area and excellent surface properties are chemically stable inorganic materials and used for various applications in industry. Silica sol was prepared from sodium silicate solution by acid neutralization method and ion exchange treatment to remove sodium ions. Through the experimental analysis for controlling factors of particle growth rate, such as temperature, pH, and aging time, the uniform size distribution of silica sol could be obtained. The size distribution and shape of silica sol was measured by TEM and dynamic light scattering method. Zeta potential change and gelling phenomena of silica sol and its rheological properties also investigated.

Treatment of Wastewater Containing Ethanolamine in Secondary System of Nuclear Power Plant (Ethanolamine이 포함된 원자력발전소 2차계통 폐수처리)

  • Lee, Han Chul
    • Applied Chemistry for Engineering
    • /
    • v.24 no.1
    • /
    • pp.38-43
    • /
    • 2013
  • ETA (ethanolamine), a pH control agent, has been used as an ammonia substitute in the secondary system of nuclear power plants since 2001. It is impossible to remove ETA from the wastewater treatment system in the nuclear power plant operating currently, because it is the non-biodegradable organics in terms of the environmental. The optimum process and chemicals for the removal of chemical oxygen demand (COD) & N with the field sample were investigated. More than 95% of Ammonium ions, contained much in wastewater, was removed with a diffused aeration system. COD could be removed over 90% through the process that includes the oxidation with mixed peroxidants (sodium persulfate/sodium percarbonate) followed by the physicochemical treatment with coagulants.

Effect of Ginseng Alcohol Extract on Short-Circuit Current Across the Frog Skin (인삼 알콜 추출물이 개구리 피부를 통한 short circuit current에 미치는 영향)

  • Lee, Joong-Woo;Kim, Hee-Joong;Kang, Doo-Hee
    • The Korean Journal of Physiology
    • /
    • v.10 no.1
    • /
    • pp.35-40
    • /
    • 1976
  • In an attempt to examine the effect of ginseng on sodium transport across the biological membrane, we have studied effects of ginseng alcohol extract on the short-circuit current(SCC) and the $Na^+-K^+$-activated ATPase activity in isolated frog skin preparations. 1. Ginseng alcohol extract applied to the mucosal surface of the frog skin significantly increased SCC at low concentration($1{\sim}10mg%$) but decreased SCC at higher concentration($50{\sim}250mg%$). 2. Similarly, when the drug was added to the serosal bathing medium, the SCC was stimulated at low doses($5{\sim}25mg%$) and inhibibited at high doses($50{\sim}250mg%$). 3. $Na^+-K^+$-activated ATPase activity of the frog skin epidermal homogenate was significantly inhibited by ginseng alcohol extract, the effect being proportional to the concentration of the drug in the incubation mixture. These results may suggest that a low dose of ginseng alcohol extrat enhances the transepithelial sodium transport probably by increasing the permeability of outer membrane of the transporting cell to sodium ion, whereas a high dose of drug reduces the sodium transport primarly by inhibiting $Na^+-K^+$ ATPase mediated active transport step.

  • PDF

Development of Room Temperature Na/S Secondary Batteries (상온형 나트륨/유황 이차전지 개발 동향)

  • RYU, HOSUK;KIM, INSOO;PARK, JINSOO
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.27 no.6
    • /
    • pp.753-763
    • /
    • 2016
  • High temperature sodium/sulfur battery(Na/S battery) has good electrochemical properties, but, the battery has some problems such as explosion and corrosion at al. because of using the liquid electrodes at high temperature and production of high corrosion. Room temperature sodium/sulfur batteries (NAS batteries) is developed to resolve of the battery problem. To recently, room temperature sodium/sulfur batteries has higher discharge capacity than its of lithium ion battery, however, cycle life of the battery is shorter. Because, the sulfur electrode and electrolyte have some problem such as polysulfide resolution in electrolyte and reaction of anode material and polysulfide. Cycle life of the battery is improved by decrease of polysulfide resolution in electrolyte and block of reaction between anode material and polysulfide. If room temperature sodium/sulfur batteries (NAS batteries) with low cost and high capacity improves cycle life, the batteries will be commercialized batteries for electric storage, electric vehicle, and mobile electric items.

Physico-chemical Changes of Radish Cubes for Kakdugi during Salting (간절임중 깍뚜기용 무우 Cube의 이화학적인 변화)

  • Kim, Joong-Man;Shin, Mi-Kyung;Hwang, Ho-Sun
    • Korean Journal of Food Science and Technology
    • /
    • v.21 no.2
    • /
    • pp.300-306
    • /
    • 1989
  • Physico-chemical changes caused by salting Korean radish cubes (for Kakdugi) with sodium chloride solution were investigated. Two-centimter cubes of Korean radish were soaked in saline solution of 5, 10, 15, 20 and 25 percent concentration. Optimum salinity, 3% as determined by taste, was reached in six hours at 5% strength, two hours in 10%, one hour at 15% and within one hour at concentration of 15% plus. Radish cubes salted in 5, 10. 15, 20 and 25% sodium chloride solution in a cube/solution weight ratio of 1:1 decreased in volume from 7.6 to 11.2% after one hour, and from 11.2 to 17.9% after six hours. Decrease in moisture content was from 83.0 to 75.9% in one hour and from 74.5 to 68.5% after six hours. $Potassium\;ion(K^+)$, $calcium\;ion(Ca^{2+})$ and $magnesium\;ion(Mg^{2+})$ content was significantly decreased by salting, but $sodium\;ion(Na^+)$ content greatly increased. In addition, salting caused firmness of the cubes to decrease, and cell shapes to shrink by plasmolysis.

  • PDF

Modeling and Optimizing Brightness Development in Peroxide Bleaching of Thermomechanical Pulp

  • Wang, Li-Jun;Park, Kyoung-Hwa;Yoon, Byung-Ho
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.31 no.5
    • /
    • pp.86-94
    • /
    • 1999
  • Alkaline peroxide bleaching of chemi-mechanical pulp is a very complicated system where various process factors affect the bleacing performance and pulp properties. Traditional onefactor-at a time method is ineffective and costly infinding the optimal bleaching conditions. In this study, statistical experimental design and multiple regression method wre used to investigated the interactions among various bleaching factors and to find out the possbile maximal brightness development during one stage alkaline peroxide bleacing of TMP. The TMP was made from 10% Korean red pine and 90% Korean spruce and had an initial brightness of 54.5% ISO. the TMP was pretreated with EDTA(0.5% on O.D. pulp, 3% pulp consistency, 30$^{\circ}C$ for 60 minutes) and bleached in a 2 L Mark V Quantum Reactor at 750 rmp, 7.5% of bleaching consistency and with 0.05% magnesium sulfate addition. The ranges of chemical factors studied , based on oven-ried pulp, were 1-5% for hydrogen peroxide, 1-4% for sodium hydroxide and 1-4% for sodium silicate. The rages of reaction temperature and time were 50-90$^{\circ}C$ and 40-180minutes respectively. Interactions of hydrogen peroxide with alkali , time with temperature ature, alkali with time and silicate with temperature were found to be significant which means that hydrogen peroxide bleaching will be favored at stable concentration of perhydroxyl ion, relatively short time and low temperature, and high level of silicate. Mathematical model which has good predictability for target brightness in one stage peroxide bleaching can also be established easily. Base ion the model, maximal brightness of 70% ISO was found to at 50$^{\circ}C$ and 50 minutes by chemical additions of 5% for hydrogen peroxide, 3.2-3.4% for sodium hydroxide and 4% for silicate based on O.D. pulp. However, this result might not be suitable for situation where furnishes are different from ours, or different pretreatment is used, or bleaching carried out at different pulp consistency. In these cases it will be good to re-investigate the process by a similar methodology as was used in this study.

  • PDF

Preparation of Ampholyte Grafted Hollow-fiber Membrane and Its Adsorption Characteristic on Metallic Ions (양성전해질 고정막의 제조 및 그것의 금속이온 흡착 특성)

  • Choi, Hyuk-Jun;Park, Sang-Jin;Kim, Min
    • Membrane Journal
    • /
    • v.20 no.2
    • /
    • pp.151-158
    • /
    • 2010
  • This paper presents the synthesis of ampholyte immobilized hollow-fiber membranes and adsorption characteristic of metallic ions. This is prepared by radiation induced grafting polymerization of an epoxy group containing Glycidyl methacrylate (GMA) onto an existing polyethylene porous hollow-fiber membrane. Ampholyte ion-exchanged alkalic group, $-NH_2$ (amine function) of Taurine (TAU) is reacted with glycidyl of GMA for the synthesis of stable membrane. However, Sodium sulfite (SS) membrane is also prepared by making chemical bonds with GMA of porous hollow-fiber membrane for the comparison of adsorption characteristic of metallic ions. These are called as TAU and SS membranes, respectively. It is shown that TAU membrane shows a steady flux, 0.9 m/h regardless of the density of TAU, while the flux of SS membrane decreases rapidly as the density of $SO_3H$ group increases. SS membrane showed a negligible flux. TAU membrane with the density 0.8 mmol/g shows the amount of metallic ions adsorbed in the following order, Cu > Cd > Mg > Sb > Pb. In general, TAU membrane with high density and reaction time showed the high amount of metallic ions adsorbed and flux.

Verification of Utility of Simple Mensuration of Cl- from Urine to Estimate the Amount of Sodium Intake (나트륨 섭취량 추정을 위한 소변 중 Cl-의 간이적 측정방법의 유용성 검증)

  • Lee, Sung-Ho;Lee, Chae-Joon;Ju, Sung-Mi;Lee, Hyun-Joo;Ra, Wang-Yeon;Kim, Soon-Ok
    • The Korean Journal of Food And Nutrition
    • /
    • v.29 no.1
    • /
    • pp.27-32
    • /
    • 2016
  • The purpose of this study was to measure concentrations of $K^+$, $Na^+$, $Cl^-$ by ionometer with check salt strip, simple salimeter and Ion-selective electrode (ISE) and compare the results of each mensuration; furthermore, the possibility of inferring the $Na^+$ concentration from $Cl^-$ concentration of urine and the impact of $K^+$ on the concentration of each ion was examined. The results showed that ISE determined $Na^+$ and $Cl^-$ concentrations in the urine are highly interrelated (R=0.9039); in addition, concentrations of $Cl^-$, measured with strip and ISE from urine are highly interrelated (R=0.9338). The concentration of $Na^+$ in urine, inferred by measuring $Cl^-$ concentration with strip, has a high relationship (R=0.8580) with the concentration of $Na^+$ in urine, measured by ISE. The results of our study will increase awareness of $Na^+$ intake and the utility of check salt strip, as well as the possibility of inferred $Na^+$ concentration from measures of $Cl^-$ concentration as a screening test for reducing sodium intake.

Synthesis and electrochemical properties of cobalt sulfide-graphene oxide nanocomposites by hydrothermal method (수열합성법을 이용한 코발트 황화물-산화그래핀 나노복합체 제조 및 전기화학적 특성 연구)

  • Su Hwan Jeong;Joo-Hyung Kim
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.33 no.6
    • /
    • pp.203-209
    • /
    • 2023
  • Cobalt sulfide nanocomposites were synthesized through a simple hydrothermal method as anode materials for sodium ion batteries (SIBs). In this work, a cobalt sulfide nanoparticle (CoS-NF) and a cobalt sulfide nanocomposite integrated with reduced graphene oxide (CoS@G-NC) were fabricated for electrochemical energy storage performance of battery. The as-prepared CoS@G-NC electrode exhibited reversible and stable cycle performance (62 % after 30 cycles at current density of 200 mA g-1). The improved electrochemical property was attributed to the small grain growth and uniform distribution of cobalt sulfide during synthesis, which maximized the diffusion pathway for sodium ions and effectively suppressed the delamination and volume expansion of cobalt sulfide during the conversion reaction. The results provide promising anode materials for next-generation SIBs.

Effects of Wafer Cleaning and Heat Treatment in Glass/Silicon Wafer Direct Bonding (유리/실리콘 기판 직접 접합에서의 세정과 열처리 효과)

  • 민홍석;주영창;송오성
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.6
    • /
    • pp.479-485
    • /
    • 2002
  • We have investigated the effects of various wafers cleaning on glass/Si bonding using 4 inch Pyrex glass wafers and 4 inch silicon wafers. The various wafer cleaning methods were examined; SPM(sulfuric-peroxide mixture, $H_2SO_4:H_2O_2$ = 4 : 1, $120^{\circ}C$), RCA(company name, $NH_4OH:H_2O_2:H_2O$ = 1 : 1 : 5, $80^{\circ}C$), and combinations of those. The best room temperature bonding result was achieved when wafers were cleaned by SPM followed by RCA cleaning. The minimum increase in surface roughness measured by AFM(atomic force microscope) confirmed such results. During successive heat treatments, the bonding strength was improved with increased annealing temperatures up to $400^{\circ}C$, but debonding was observed at $450^{\circ}C$. The difference in thermal expansion coefficients between glass and Si wafer led debonding. When annealed at fixed temperatures(300 and $400^{\circ}C$), bonding strength was enhanced until 28 hours, but then decreased for further anneal. To find the cause of decrease in bonding strength in excessively long annealing time, the ion distribution at Si surface was investigated using SIMS(secondary ion mass spectrometry). tons such as sodium, which had been existed only in glass before annealing, were found at Si surface for long annealed samples. Decrease in bonding strength can be caused by the diffused sodium ions to pass the glass/si interface. Therefore, maximum bonding strength can be achieved when the cleaning procedure and the ion concentrations at interface are optimized in glass/Si wafer direct bonding.