• Title/Summary/Keyword: Social Recommendation

Search Result 399, Processing Time 0.037 seconds

Efficient Data Processing Method for Social Data (소셜 데이터를 위한 효율적인 데이터 처리 기법)

  • Kim, Sung Rim;Kwon, Joon Hee
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.9 no.3
    • /
    • pp.31-38
    • /
    • 2013
  • The evolution of the Web from Web 1.0 to Web 2.0 has brought up new platforms as SNSs(Social Network Service) that are used by users to articulate and manage their relationships. SNSs are an online phenomenon which has become extremely popular. A SNS essentially consists of a representation of each user, his/her social links, and a variety of additional services. SNSs are increasingly attracting the attention of academic and industry researchers. What makes SNS unique is that they have a relationship with friends. The friend recommendation is one important feature of social networking services. People tend to trust the opinions of friends they know rather than the opinions of strangers. In this paper, we propose an efficient data processing method for social data. We study previous researches about social score in social network service. Our ESS(Efficient Social Score) is computed by both friendship weight and score of a document that was tagged by a user's friends. Our experimental results also confirm that our method has good performance.

A Study on the Restaurant Recommendation Service App Based on AI Chatbot Using Personalization Information

  • Kim, Heeyoung;Jung, Sunmi;Ryu, Gihwan
    • International Journal of Advanced Culture Technology
    • /
    • v.8 no.4
    • /
    • pp.263-270
    • /
    • 2020
  • The growth of the mobile app markets has made it popular among people who recommend relevant information about restaurants. The recommendation service app based on AI Chatbot is that it can efficiently manage time and finances by making it easy for restaurant consumers to easily access the information they want anytime, anywhere. Eating out consumers use smartphone applications for finding restaurants, making reservations, and getting reviews and how to use them. In addition, social attention has recently been focused on the research of AI chatbot. The Chatbot is combined with the mobile messenger platform and enabling various services due to the text-type interactive service. It also helps users to find the services and data that they need information tersely. Applying this to restaurant recommendation services will increase the reliability of the information in providing personal information. In this paper, an artificial intelligence chatbot-based smartphone restaurant recommendation app using personalization information is proposed. The recommendation service app utilizes personalization information such as gender, age, interests, occupation, search records, visit records, wish lists, reviews, and real-time location information. Users can get recommendations for restaurants that fir their purpose through chatting using AI chatbot. Furthermore, it is possible to check real-time information about restaurants, make reservations, and write reviews. The proposed app uses a collaborative filtering recommendation system, and users receive information on dining out using artificial intelligence chatbots. Through chatbots, users can receive customized services using personal information while minimizing time and space limitations.

Exercise Recommendation System Using Deep Neural Collaborative Filtering (신경망 협업 필터링을 이용한 운동 추천시스템)

  • Jung, Wooyong;Kyeong, Chanuk;Lee, Seongwoo;Kim, Soo-Hyun;Sun, Young-Ghyu;Kim, Jin-Young
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.6
    • /
    • pp.173-178
    • /
    • 2022
  • Recently, a recommendation system using deep learning in social network services has been actively studied. However, in the case of a recommendation system using deep learning, the cold start problem and the increased learning time due to the complex computation exist as the disadvantage. In this paper, the user-tailored exercise routine recommendation algorithm is proposed using the user's metadata. Metadata (the user's height, weight, sex, etc.) set as the input of the model is applied to the designed model in the proposed algorithms. The exercise recommendation system model proposed in this paper is designed based on the neural collaborative filtering (NCF) algorithm using multi-layer perceptron and matrix factorization algorithm. The learning proceeds with proposed model by receiving user metadata and exercise information. The model where learning is completed provides recommendation score to the user when a specific exercise is set as the input of the model. As a result of the experiment, the proposed exercise recommendation system model showed 10% improvement in recommended performance and 50% reduction in learning time compared to the existing NCF model.

Personalized University Educational Contents Recommendation Scheme for Job Curation Systems (취업 큐레이션 시스템을 위한 개인 맞춤형 교육 콘텐츠 추천 기법)

  • Lim, Jongtae;Oh, Youngho;Choi, JaeYong;Pyun, DoWoong;Lee, Somin;Shin, Bokyoung;Chae, Daesung;Bok, Kyoungsoo;Yoo, Jaesoo
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.7
    • /
    • pp.134-143
    • /
    • 2021
  • Recently, with the development of mobile devices and social media services, contents recommendation schemes have been studied. They are typically applied to the job curation systems. Most existing university education content recommendation schemes only recommend the most frequently taken subjects based on the student's school and major. Therefore, they do not consider the type or field of employment that each student wants. In this paper, we propose a university educational contents recommendation scheme for job curation services. The proposed scheme extracts companies that a user is interested in by analyzing his/her activities in the job curation system. The proposed scheme selects graduates or mentors based on the reliability and similarity of graduates who have been employed at the companies of interest. The proposed scheme recommends customized subjects, comparative subjects, and autonomous activity lists to users through collaborative filtering.

A Study on the Fitness Recommendation System Utilizing Mobile Sensor Control Mechanism (모바일 센서 제어 메커니즘을 활용한 휘트니스 추천 시스템에 관한 연구)

  • Lee, Jong-Won;Kim, Dong-hyun;Park, Sang-no;Jung, Hoe-kyung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.05a
    • /
    • pp.600-602
    • /
    • 2015
  • WHO(World Health Organization) as specified due to the global epidemic of obesity in the nation and the social costs associated with health increase. If treating diseases of the existing research targets the medical field with increasing interest in the welfare and well-being sector due to the improvement in earnings, and gradually change to advance the prevention and management. In this paper, we consider these social changes, we propose a personalized recommendation system fitness. This makes it possible that the recommendation is effective to the movement by the movement mechanism by which user. Mobile sensor is overcome by software and having hardware limitations for this purpose, proposes an optimized sensor control mechanism.

  • PDF

Social Network Analysis for New Product Recommendation (신상품 추천을 위한 사회연결망분석의 활용)

  • Cho, Yoon-Ho;Bang, Joung-Hae
    • Journal of Intelligence and Information Systems
    • /
    • v.15 no.4
    • /
    • pp.183-200
    • /
    • 2009
  • Collaborative Filtering is one of the most used recommender systems. However, basically it cannot be used to recommend new products to customers because it finds products only based on the purchasing history of each customer. In order to cope with this shortcoming, many researchers have proposed the hybrid recommender system, which is a combination of collaborative filtering and content-based filtering. Content-based filtering recommends the products whose attributes are similar to those of the products that the target customers prefer. However, the hybrid method is used only for the limited categories of products such as music and movie, which are the products whose attributes are easily extracted. Therefore it is essential to find a more effective approach to recommend to customers new products in any category. In this study, we propose a new recommendation method which applies centrality concept widely used to analyze the relational and structural characteristics in social network analysis. The new products are recommended to the customers who are highly likely to buy the products, based on the analysis of the relationships among products by using centrality. The recommendation process consists of following four steps; purchase similarity analysis, product network construction, centrality analysis, and new product recommendation. In order to evaluate the performance of this proposed method, sales data from H department store, one of the well.known department stores in Korea, is used.

  • PDF

Content-based Movie Recommendation system based on demographic information and average ratings of genres. (사용자 정보 및 장르별 평균 평가를 이용한 내용 기반 영화 추천 시스템)

  • Ugli, Sadriddinov Ilkhomjon Rovshan;Park, Doo-Soon;Kim, Dae-Young
    • Annual Conference of KIPS
    • /
    • 2022.11a
    • /
    • pp.34-36
    • /
    • 2022
  • Over the last decades, information has increased exponentially due to SNS(Social Network Service), IoT devices, World Wide Web, and many others. Therefore, it was monumentally hard to offer a good service or set of recommendations to consumers. To surmount this obstacle numerous research has been conducted in the Data Mining field. Different and new recommendation models have emerged. In this paper, we proposed a Content-based movie recommendation system using demographic information of users and the average rating for genres. We used MovieLens Dataset to proceed with our experiment.

Using Metaverse and AI recommendation services Development of Korea's leading kiosk usage service guide (메타버스와 AI 추천서비스를 활용한 국내 대표 키오스크 사용서비스 안내 개발)

  • SuHyeon Choi;MinJung Lee;JinSeo Park;Yeon Ho Seo;Jaehyun Moon
    • Annual Conference of KIPS
    • /
    • 2023.11a
    • /
    • pp.886-887
    • /
    • 2023
  • This paper is about the development of kiosks that provide four types of service. Simple UI and educational videos solve the complexity of existing kiosks and provide an intuitive and convenient screen to users. In addition, the AR function, which is a three-dimensional form, shows directions and store representative images. After storing user information in the DB, a learning model is generated using user-based KNN collaborative filtering to provide a recommendation menu. As a result, it is possible to increase user convenience through kiosks using metaverse and AI recommendation services. It is also expected to solve digital alienation of social classes who have difficulty using kiosks.

Development of a Personalized Music Recommendation System Using MBTI Personality Types and KNN Algorithm

  • Chun-Ok Jang
    • International Journal of Advanced Culture Technology
    • /
    • v.12 no.3
    • /
    • pp.427-433
    • /
    • 2024
  • This study aims to develop a personalized music digital therapeutic based on MBTI personality types and apply it to depression treatment. In the data collection stage, participants' MBTI personality types and music preferences were surveyed to build a database, which was then preprocessed as input data for the KNN model. The KNN model calculates the distance between personality types using Euclidean distance and recommends music suitable for the user's MBTI type based on the nearest K neighbors' data. The developed system was tested with new participants, and the system and algorithm were improved based on user feedback. In the final validation stage, the system's effectiveness in alleviating depression was evaluated. The results showed that the MBTI personality type-based music recommendation system provides a personalized music therapy experience, positively impacting emotional stability and stress reduction. This study suggests the potential of nonpharmacological treatments and demonstrates that a personalized treatment experience can offer more effective and safer methods for treating depression.

A Study on the Effect of Characteristics of Online Streaming Course on Learning Satisfaction and Recommendation Intention (온라인 스트리밍 수업의 특성이 학습 만족도와 추천의도에 미치는 영향 분석 연구)

  • Zhu, LiuCun;Yang, HuiJun;Jiang, Xuejin;Hwang, HaSung
    • Journal of Internet Computing and Services
    • /
    • v.23 no.5
    • /
    • pp.59-68
    • /
    • 2022
  • As real-time live streaming broadcasting and non-face-to-face classes are spreading in the Corona era, it is time to take academic interest in online streaming classes. In particular, it is important to clarify why users use online streaming classes. Therefore, this study proposes social presence, interest, convenience of use, and interactivity as characteristics of online streaming classes, and aims to verify how these characteristics affect learning satisfaction and furthermore, recommendation intention. As a result of conducting a survey on 338 Chinese collegestudents, it was found that interactivity, social presence, and interest had a positive effect on learning satisfaction, but the effect of ease did not appear. On the other hand, it was confirmed that learning satisfaction had a positive effect on the online streaming class recommendation intention.