목적 본 연구의 목적은 텍스트 마이닝이라는 빅데이터 분석 기법 중 하나를 활용하여 노인장기요양보험에서 작업치료의 역할을 정량적으로 분석하는 것이다. 연구방법 신문기사 분석을 위해 2007~208년까지 기간 설정 후 "노인장기요양보험+작업치료"를 주제어로 수집하였다. Textom이라는 웹 크롤링(Web Crawling)을 활용해 국내 검색엔진 네이버에서 <네이버뉴스>의 데이터베이스를 활용하였다. 수집결과 노인장기요양보험+작업치료 검색에서 510편의 뉴스 데이터의 기사제목과 원문을 수집한 후 연도별 기사 빈도, 핵심어분석을 시행하였다. 연구결과 연도별 기사 발행 빈도를 살펴보면 2015년과 2017년 발행한 기사 수가 70편(13.7%)으로 가장 많았고, 핵심어 분석 상위 10개의 용어는 '치매'(344)가 가장 많았으며, 작업과 핵심어의 관례를 알아보면, 치매, 치료, 병원, 건강, 서비스, 재활, 시설, 제도, 등급, 어르신, 전문, 급여, 공단, 국민이 관련이 있는 것으로 나타났다. 결론 본 연구에서는 텍스트 마이닝 기법을 통해 11년간의 노인장기요양보험의 언론 보도 동향을 토대로 관련 핵심 키워드에서 치매와 재활에 대해 사회적 요구와 작업치료사의 역할을 보다 객관적으로 확인하였다는 점에서 의의가 있다. 이 결과를 바탕으로 다음 연구에서는 연도에 따른 다양한 분석방법을 통해 연구방법론을 보완하여야 할 것이다.
누구나 뉴스와 주가 사이에는 밀접한 관계를 있을 것이라 생각한다. 그래서 뉴스를 통해 투자기회를 찾고, 투자이익을 얻을 수 있을 것으로 기대한다. 그렇지만 너무나 많은 뉴스들이 실시간으로 생성 전파되며, 정작 어떤 뉴스가 중요한지, 뉴스가 주가에 미치는 영향은 얼마나 되는지를 알아내기는 쉽지 않다. 본 연구는 이러한 뉴스들을 수집 분석하여 주가와 어떠한 관련이 있는지 분석하였다. 뉴스는 그 속성상 특정한 양식을 갖지 않는 비정형 텍스트로 구성되어있다. 이러한 뉴스 컨텐츠를 분석하기 위해 오피니언 마이닝이라는 빅데이터 감성분석 기법을 적용하였고, 이를 통해 주가지수의 등락을 예측하는 지능형 투자의사결정 모형을 제시하였다. 그리고, 모형의 유효성을 검증하기 위하여 마이닝 결과와 주가지수 등락 간의 관계를 통계 분석하였다. 그 결과 뉴스 컨텐츠의 감성분석 결과값과 주가지수 등락과는 유의한 관계를 가지고 있었으며, 좀 더 세부적으로는 주식시장 개장 전 뉴스들과 주가지수의 등락과의 관계 또한 통계적으로 유의하여, 뉴스의 감성분석 결과를 이용해 주가지수의 변동성 예측이 가능할 것으로 판단되었다. 이렇게 도출된 투자의사결정 모형은 여러 유형의 뉴스 중에서 시황 전망 해외 뉴스가 주가지수 변동을 가장 잘 예측하는 것으로 나타났고 로지스틱 회귀분석결과 분류정확도는 주가하락 시 70.0%, 주가상승 시 78.8%이며 전체평균은 74.6%로 나타났다.
빅데이터와 사회연결망 분석기법을 이용하여 사회적 이슈인 '노인 이미지'를 분석 하였다. '노인' 키워드를 입력하여 텍스트마이닝 기법으로 추출된 단어를 분석한 결과 대중의 트렌드를 대표하는 카페, 블로그 등의 매체를 통해 본 노인 이미지는 '어르신'이라는 단어를 가장 많이 사용하고 있었다. 상위 10위 빈도수를 보인 단어를 이용하여 노인의 이미지를 표현하면, "노인은 사회의 존경을 받는 어르신이며 돈을 벌기위해 자격증을 따려고 하고 건강을 챙기며 고령에도 불구하고 100세까지 건강하게 일을 하기를 원하는 어르신"으로 정리되었다. 본 연구는 방대한 양의 데이터를 수집하여 이를 사회연결망 기법으로 분석함으로써 사회적 담론을 포함한 거시적 수준의 '노인 이미지' 분석을 통해 기존의 분석방법과 차별화하고자 하였다. 대중이 느끼는 노인에 대한 이미지가 '어르신'으로 긍정적으로 표현되는 것을 볼 때, 현재 추진하는 노인정책의 방향이 바람직한 방향으로 평가 받고 있다고 할 수 있으며, 한편으로는 그렇게 평가받기를 원하는 대중의 '욕구'를 느낄 수 있었다. 따라서 향후에 적용할 노인 정책 방향은, 노인들이 사회적 역할을 감당하여 사회에서 '필요한 존재'로 인식될 수 있도록 하는 정책이 우선되어야 한다. 또한 건강을 유지하고 활동할 수 있는 일자리 창출과 복지, 소외에 대한 대책 등의 우선순위가 반영된 노인 정책을 추진할 것을 제언하였다.
This study examined consumer perceptions and consumer responses of Halal cosmetics and compared them with vegan cosmetics, which is a term similarly used. Twitter API of Python 3.7 was used to collect the keywords '#halalcosmetics' and '#vegancosmetics'. First, the main perception of consumers on Halal cosmetics focused on the original concept, image, expected efficacy, and factors to consider before purchase, religious keywords, labels and packaging for Halal cosmetics. Second, the main consumer perception of vegan cosmetics was the product concept, expected efficacy, factors to consider before purchase, related vegan industry, image, and vegan cosmetic components. Third, the consumer perceptions of Halal cosmetics and vegan cosmetics were similar in multiple ways, and both concepts included the Cruelty-free concept. Fourth, consumer satisfaction factors included cosmetics color, brand's consumer service, efficacy, smell, packaging design, reasonable price, effects, and formulation of cosmetics as well as satisfaction with Halal certification, and satisfaction of Vegan consumers. Consumer dissatisfaction factors included smell, flavor, delay in shipping, dissatisfaction with formulation, discrepancy between actual color and computer screen, concern and distrust about the use of prohibited ingredients for Halal products. This study examined consumer perceptions and reactions to Halal and vegan cosmetics to create basic knowledge for niche markets that are emerging as an ethical beauty consumption trend.
최근 댓글 / 텍스트, 이미지, 비디오, 블로그 및 사용자 경험을 포함한 소셜네트워크서비스(SNS) 데이터에는 다양한 고객의 추천 시스템을 구축하고 비즈니스 분석가에게 통찰력 있는 데이터 / 결과를 제공하는데 사용할 수 있는 많은 정보가 포함되어 있다. 멀티미디어 데이터, 특히 이미지 및 비디오와 같은 시각적 데이터는 SNS 데이터 중에서도 특정(문화권) 지역을 반영할 수 있는 가장 풍부한 데이터이며, 문화적 가치 및 관심사는 전반적으로 데이터의 많은 부분을 차지하고 있다. 이러한 방대한 데이터로부터 원하는 데이터를 지능적으로 추출하고, 엄청난 양의 데이터를 마이닝 하려면 보다 효율적이고 지능적인 데이터 분석 방법이 필요하다. 따라서 본 논문의 목적은 이러한 데이터를 모델링하고, 색인하고, 검색하는 방법에 대해 제안하고자 한다.
Fake news threaten democratic elections and causes social conflicts, resulting in major damage. However, the concept of fake news is hard to define, as there is a saying, "News is not fake, fake is not news." Fake news, however, has irreversible characteristics that can not be recovered or reversed completely through post-punishment of economic and political benefits. It is also rapidly spreading in the early days. Therefore, it is very important to preemptively detect these types of articles and prevent their blind proliferation. The existing countermeasures are focused on reporting fake news, raising the level of punishment, and the media & academia to determine the authenticity of the news. Researchers are also trying to determine the authenticity by analyzing its contents. Apart from the contents of fake news, determining the behavioral characteristics of the promoters and its qualities can help identify the possibility of having fake news in advance. The online community has a fake news interception and response tradition through its long-standing community-based activities. As a result, I attempted to model the fake news by analyzing the affirmation-denial analysis and posting behavior by securing the web board crawl of the 'M community' bulletin board during the 2017 Korean presidential election period. Random forest algorithm deemed significant. The results of this research will help counteract fake news and focus on preemptive blocking through behavioral analysis rather than post-judgment after semantic analysis.
Big data analytics and social media have shifted the way fashion trends are dictated. Fashion as a medium for expressing gender has created new concepts of masculinity in popular culture, where men are increasingly depicted in a softer style. In this study, we analyzed 2,879 menswear collections over a 10-year period from Vogue US to uncover key menswear trends. Using Semantic Network Analysis (SNA) on Orange3, we were able to quantitatively analyze how contemporary menswear designers interpreted diversified trends of masculinity on the runway. Frequency and degree centrality were measured to weigh the significance of trend keywords. "Jacket (f = 3056; DC = 0.80), shirt (f = 1912; DC = 0.60) and pant (f = 1618; DC = 0.53)" were among the most prominent keywords. Our results showed that soft masculine keywords, e.g., "lace, floral, and pink" also appeared, but with the majority scoring DC = < 0.10. The findings provide an insight into key menswear trends through frequency, degree centrality measurements, time-series analysis, egocentric, and visual semantic networks. This also demonstrates the feasibility of using text analytics to visualize design trends, concepts, and patterns for application as an ideation tool for academic researchers, designers, and fashion retailers.
The growth in social media, blogs and restaurant listing directories have led to increasing customer reviews about restaurants, their quality of food items and services available on the internet. These user reviews offer a massive amount of valuable information that can be used for various decision-making purposes. Currently, most food recommendation sites provide recommendation scores about restaurants rather than food items of the restaurant and the provided recommendation scores may be biased since they are calculated only from user reviews listed only in their sites. Usually, people wants a reliable recommendation about foods, not restaurant. In this paper, we present a reliable Korean food items rating method; we first extract food items by applying NER technique to restaurant reviews collected from many Korean restaurant recommendation web sites, blogs and web data. Then, we apply lexicon-based sentiment analysis on collected user reviews and predict people's opinions as sentiment polarity scores (+1 for positive; -1 for negative; 0 for neutral). Finally, by taking average of all calculated polarity scores about a food item, we obtain a rating to individual menu items of the restaurant. The proposed food item rating is more reliable since it does not depend on reviews of only one site.
Recently, the importance of impact-based forecasting has increased along with the socio-economic impact of severe weather have emerged. As news articles contain unconstructed information closely related to the people's life, this study developed and evaluated a binary classification algorithm about snowfall damage information by using media articles text mining. We collected news articles during 2009 to 2021 which containing 'heavy snow' in its body context and labelled whether each article correspond to specific damage fields such as car accident. To develop a classifier, we proposed a probability-based classifier based on the ratio of the two conditional probabilities, which is defined as I/O Ratio in this study. During the construction process, we also adopted the n-gram approach to consider contextual meaning of each keyword. The accuracy of the classifier was 75%, supporting the possibility of application of news big data to the impact-based forecasting. We expect the performance of the classifier will be improve in the further research as the various training data is accumulated. The result of this study can be readily expanded by applying the same methodology to other disasters in the future. Furthermore, the result of this study can reduce social and economic damage of high impact weather by supporting the establishment of an integrated meteorological decision support system.
Sentiment analysis is a method used to comprehend feelings, opinions, and attitudes in text, and it is essential for evaluating consumer feedback and social media posts. However, creating sentiment dictionaries, which are necessary for this analysis, is complex and time-consuming because people express their emotions differently depending on the context and domain. In this study, we propose a new method for simplifying this procedure. We utilize syntax analysis of the Korean language to identify and extract sentiment words based on the Reason-Sentiment Pattern, which distinguishes between words expressing feelings and words explaining why those feelings are expressed, making it applicable in various contexts and domains. We also define sentiment words as those with clear polarity, even when used independently and exclude words whose polarity varies with context and domain. This approach enables the extraction of explicit sentiment expressions, enhancing the accuracy of sentiment analysis at the attribute level. Our methodology, validated using Korean cosmetics review datasets from Korean online shopping malls, demonstrates how a sentiment dictionary focused solely on clear polarity words can provide valuable insights for product planners. Understanding the polarity and reasons behind specific attributes enables improvement of product weaknesses and emphasis on strengths. This approach not only reduces dependency on extensive sentiment dictionaries but also offers high accuracy and applicability across various domains.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.