본 연구는 소셜 미디어 참여 관련 연구 베타분석을 위해 네트워크 분석과 클러스터링 기법을 활용하였다. 주경로 분석 결과 37개의 주요 연구가 추출되었고 커뮤니티 관련 네트워크와 뉴 미디어 관련 네트워크 두 가지로 구분되었다. 연결망 분석과 클러스터링 결과 네가지 클러스터가 형성되었다. 본 연구는 학술 데이터를 활용해 연구 동향을 거시적으로 파악하며 그 방법론으로 네트워크 분석과 기계학습을 활용하였다는 학술적 의의를 가진다.
본 연구는 사회복지사의 일터에서 나타나는 무형식학습 방법을 분석하고, 인적자원개발 및 관리 차원에서 사회복지사의 역량강화를 위한 무형식학습 촉진방안을 탐색하는 것이 목적이다. 연구방법은 제주지역 소재 종합사회복지관에 근무하는 사회복지사 20명을 대상으로 한 질적 사례연구이다. 연구결과 사회복지사의 일터에서 일상적인 무형식학습 방법은 '상사의 피드백, 지인접촉, 회의참여, 자료 검토' 등이었다. 업무숙련 과정에서 가장 많이 활용된 무형식학습은 '상사의 피드백과 지인접촉'으로 인적자원과의 소통에 중점을 두었다. 이에, 사회복지기관에서는 사회복지사의 역량강화를 위해 보수교육과 같은 제도적인 형식학습 지원뿐 아니라 개인학습 지원, 비공식모임, 멘토링, 슈퍼비전, 동료와의 상호작용 등 무형식적 활동을 촉진하는 업무환경 조성이 필요하다는 제안을 하였다.
코로나 시대 실시간 라이브 스트리밍 방송과 비대면 수업이 확산되고 있음에 따라 온라인 스트리밍 수업에 대한 학문적 관심이 필요한 시점이다. 특히 이용자 측면에서 왜 온라인 스트리밍 수업을 이용하는지를 밝히는 것이 중요하다. 이에 본 연구는 온라인 스트리밍 수업의 특성으로 사회적 현존감, 흥미성, 이용 편리성, 상호작용성을 제안하고, 이들 특성이 학습 만족도에 어떠한 영향을 미치는지, 나아가 추천의도에 어떠한 영향을 미치는지를 검증하고자 하였다. 중국 대학생 338명을 대상으로 설문 조사를 실시한 결과 상호작용성, 사회적 현존감, 흥미성은 학습 만족도에 정적인 영향을 미치는 것으로 나타났지만, 이용 편리성의 영향력은 나타나지 않았다. 한편, 학습 만족도는 온라인 스트리밍 수업 추천의도에 긍정적인 영향을 미치는 것으로 확인되었다.
소셜미디어의 정치사회적인 활용도가 높아짐에 따라 소셜빅데이터 기반 온라인 동향분석 및 모니터링 기술에 대한 수요 역시 급증하고 있다. 본 논문에서는 이러한 요구에 부합, 특히 여론 형성의 악영향을 끼치는 부정적 이슈 탐지를 위해 사회적으로 파장이 큰 이슈 중 공공여론이 부정적으로 형성될 이슈를 '리스크'로 정의하고 세부 유형을 분류한다. 리스크 유형 정의를 위해 뉴스 문서집합을 대상으로 전수조사를 실시하였으며, 이슈 분야 즉 도메인별 특성을 파악하여 세부 유형을 정의한다. 또한 뉴스와 같은 공적미디어를 통해 정의된 리스크 유형이 개인화된 소셜 미디어에 나타난 리스크 유형과 어떤 차이가 있는지를 알아보기 위해 교차분석을 수행한다. 조사 결과에 따라 6개의 도메인별로 58개의 세부 유형을 정의하고 기계학습 방법을 통해 자동 분류 학습 모델을 구축한다. 실험 결과를 통해 소셜 미디어에 나타난 사회적 이슈 리스크를 자동으로 탐지, 분류가 가능함을 보인다.
이 연구는 미디어와 지리교육의 새로운 관계를 정립하려는 시도로서 미디어 리터러시에 초점을 두고 있다. 지금까지 미디어를 통해 나타난 지리적 현상이 세계를 비추는 창으로 간주되었다면, 이제는 다양한 주체와 목적에 의해 사회적으로 구성된 재현의 산물로서 인식될 필요가 있다. 미디어에 대한 이러한 인식론적 전환은 교수 학습에 있어서 사회적 구성주의와 미디어 리터러시의 중요성을 부각시킨다. 기존의 미디어를 활용한 소극적이고 수동적인 지리교육에서 벗어나 미디어를 통해 재현된 지리적 현상, 즉 미디어 텍스트가 어떻게 구성되고 선별되는지를 비판적으로 분석 이해하고 추론할 수 있는 능동적인 미디어 리터러시를 촉진할 수 있는 지리교육으로의 전환이 요구된다. 이러한 미디어 리터러시로서의 지리교육은 학생들의 능동적이고 창의적인 비판적 활동을 강조하여 미디어 텍스트에 감추어진 이데올로기를 드러내게 할 뿐만 아니라, 학생들의 지리적 상상력을 자극하고 풍부하게 할 수 있다는 점에서 더욱 의의가 있다고 할 수 있다.
International Journal of Computer Science & Network Security
/
제22권9호
/
pp.334-342
/
2022
Nowadays, as we can notice on social media, most users choose to use more than one language in their online postings. Thus, social media analytics needs reviewing as code-switching analytics instead of traditional analytics. This paper aims to present evidence comparable to the accuracy of code-switching analytics techniques in analysing the mood state of social media users. We conducted a systematic literature review (SLR) to study the social media analytics that examined the effectiveness of code-switching analytics techniques. One primary question and three sub-questions have been raised for this purpose. The study investigates the computational models used to detect and measures emotional well-being. The study primarily focuses on online postings text, including the extended text analysis, analysing and predicting using past experiences, and classifying the mood upon analysis. We used thirty-two (32) papers for our evidence synthesis and identified four main task classifications that can be used potentially in code-switching analytics. The tasks include determining analytics algorithms, classification techniques, mood classes, and analytics flow. Results showed that CNN-BiLSTM was the machine learning algorithm that affected code-switching analytics accuracy the most with 83.21%. In addition, the analytics accuracy when using the code-mixing emotion corpus could enhance by about 20% compared to when performing with one language. Our meta-analyses showed that code-mixing emotion corpus was effective in improving the mood analytics accuracy level. This SLR result has pointed to two apparent gaps in the research field: i) lack of studies that focus on Malay-English code-mixing analytics and ii) lack of studies investigating various mood classes via the code-mixing approach.
International Journal of Computer Science & Network Security
/
제22권11호
/
pp.265-271
/
2022
Social media is a form of communication based on the internet to share information through content and images. Their choice of profile images and type of image they post can be closely connected to their personality. The user posted images are designated as personality traits. The objective of this study is to predict five factor model personality dimensions from profile images by using deep learning and neural networks. Developed a deep learning framework-based neural network for personality prediction. The personality types of the Big Five Factor model can be quantified from user profile images. To measure the effectiveness, proposed two models using convolution Neural Networks to classify each personality of the user. Done performance analysis among two different models for efficiently predict personality traits from profile image. It was found that VGG-69 CNN models are best performing models for producing the classification accuracy of 91% to predict user personality traits.
Owusu-Ansah, Christopher M.;Arthur, Beatrice;Yebowaah, Franklina Adjoa;Amoako, Kwabena
International Journal of Knowledge Content Development & Technology
/
제11권4호
/
pp.7-34
/
2021
The purpose of the study was to explore the uses and gratification of social media among first-year student groups at a satellite campus of a public university in Ghana. The study employed a descriptive survey design. The study involved all 1061 first-year university students in six academic departments of the College. A total of 680 (64%) participants returned validly completed copies of the questionnaire. Descriptive statistics and thematic analysis were employed for data analysis. The findings indicate that WhatsApp was the most popular application for social media groups, while a need for information-sharing, peer-tutoring and learning, and finding and keeping friends were the primary motivations for joining social media groups. First-year students are involved mainly in reactive activities, as most engage when solving an academic assignment through group discussions. Though challenges persist, such as posting of unwanted images, inadequate participation, and ineffective and irrelevant communication, most are willing to continue their social media groups' membership in the long term. This study provides valuable insight into transitioning students' lived experiences on social media from the group perspective. These insights are valuable conceptually and practically to academic counsellors, librarians and student affairs officers who are expected to provide on-going education on (social) media literacy to first-year students to enhance the adjustment process. The study is the first of its kind in Ghana that investigates social media group participants' exit intentions.
International Journal of Computer Science & Network Security
/
제24권7호
/
pp.207-213
/
2024
This study investigated the perceived usability of the Blackboard learning management system (LMS) amongst students at Umm Al-Qura University. A quantitative approach was employed to explore the potential relationship between Blackboard usability and social media platform usage. Additionally, the study aimed to identify other factors influencing perceived usability. Data were collected through a three-section questionnaire distributed electronically to a sample of students (n=544). The findings, based on System Usability Scale (SUS) scores, revealed that the overall perceived usability of Blackboard resided near the midpoint of the scale, indicating an "acceptable" level. A potential negative correlation emerged between social media usage time and perceived Blackboard usability. Students who reported lower social media usage exhibited higher SUS scores. Training on Blackboard usage demonstrably exerted a positive influence on perceived usability. Gender was not identified as a statistically significant factor. An analysis of student support methods revealed that seeking help from a friend was the most prevalent approach, followed by search engines, university technical support, and social media platforms. The findings suggest that implementing strategies to improve Blackboard usability at Umm Al-Qura University could be achieved through readily accessible training materials and the exploration of alternative support channels.
International Journal of Knowledge Content Development & Technology
/
제14권3호
/
pp.59-76
/
2024
The prominent role accorded to social media in the academic community for research, teaching and learning revolves around its significance among users. Social media offers a platform for individuals to engage with and share perceptions relating to different disciplines. This current research was conducted to investigate the level of awareness and frequency of social media technology use among postgraduate students of Library and Information Science in Nigerian universities. The descriptive survey design was used for the study. Structured questionnaires were used to collect data from 919 library and information science (LIS) postgraduate students in the universities. In all, 742 copies out of the 919 distributed were returned and found usable, thereby making the return rate to be 81%. Data collected were analysed using mean and standard deviation. The study revealed that the LIS postgraduate students frequently use social media such as Wikipedia (x=3.94>3.50), Instagram (x=3.86>3.50), Facebook (x=3.85>3.50), Zoom ($\overline{x}$=3.78>3.50), LinkedIn (x=3.69>3.50), YouTube ($\overline{x}$=3.54>3.50), Twitter (x=3.52>3.50). The study established that students use social media tools for their personal, professional and research activities. The study also found that the level of awareness and use of social media by the students was high. The study recommended that the use of social media should be incorporated into the LIS curriculum including training sessions for the students on how to use the media effectively.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.