• Title/Summary/Keyword: Social Big Data

Search Result 1,002, Processing Time 0.027 seconds

A Method for Compound Noun Extraction to Improve Accuracy of Keyword Analysis of Social Big Data

  • Kim, Hyeon Gyu
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.8
    • /
    • pp.55-63
    • /
    • 2021
  • Since social big data often includes new words or proper nouns, statistical morphological analysis methods have been widely used to process them properly which are based on the frequency of occurrence of each word. However, these methods do not properly recognize compound nouns, and thus have a problem in that the accuracy of keyword extraction is lowered. This paper presents a method to extract compound nouns in keyword analysis of social big data. The proposed method creates a candidate group of compound nouns by combining the words obtained through the morphological analysis step, and extracts compound nouns by examining their frequency of appearance in a given review. Two algorithms have been proposed according to the method of constructing the candidate group, and the performance of each algorithm is expressed and compared with formulas. The comparison result is verified through experiments on real data collected online, where the results also show that the proposed method is suitable for real-time processing.

Big-data Analytics: Exploring the Well-being Trend in South Korea Through Inductive Reasoning

  • Lee, Younghan;Kim, Mi-Lyang;Hong, Seoyoun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.6
    • /
    • pp.1996-2011
    • /
    • 2021
  • To understand a trend is to explore the intricate process of how something or a particular situation is constantly changing or developing in a certain direction. This exploration is about observing and describing an unknown field of knowledge, not testing theories or models with a preconceived hypothesis. The purpose is to gain knowledge we did not expect and to recognize the associations among the elements that were suspected or not. This generally requires examining a massive amount of data to find information that could be transformed into meaningful knowledge. That is, looking through the lens of big-data analytics with an inductive reasoning approach will help expand our understanding of the complex nature of a trend. The current study explored the trend of well-being in South Korea using big-data analytic techniques to discover hidden search patterns, associative rules, and keyword signals. Thereafter, a theory was developed based on inductive reasoning - namely the hook, upward push, and downward pull to elucidate a holistic picture of how big-data implications alongside social phenomena may have influenced the well-being trend.

Big Data Analysis of Social Media on Gangwon-do Tourism (강원도 관광에 대한 소셜 미디어 빅데이터 분석)

  • JIN, TIANCHENG;Jeong, Eun-Hee
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.14 no.3
    • /
    • pp.193-200
    • /
    • 2021
  • Recently, posts and opinions on tourist attractions are actively shared on social media. These social big data provide meaningful information to identify objective images of tourist destinations recognized by consumers. Therefore, an in-depth understanding of the tourist image is possible by analyzing these big data on tourism. The study is to analyze destination images in Gangwon-do using big data from social media. It is wanted to understand destination images in Gangwon-do using semantic network analysis and then provided suggestions on how to enhance image to secure differentiated competitiveness as a destination for tourists. According to the frequency analysis results, as tourism in Gangwon-do, Sokcho, Gangneung, and Yangyang were mentioned at a high level in that order, and the purpose of travel was restaurant tour, gourmet food, family trip, vacation, and experience. In particular, it was found that they preferred day trips, weekends, and experiences. Four suggestions were made based on the results. First, it is necessary to develop various types of hotels, accommodation facilities and experience-oriented tour packages. Second, it is necessary to develop a day-to-day travel package that utilizes proximity to the Seoul metropolitan area. Third, it is necessary to promote traditional restaurants and local food. Finally, it is necessary to develop tourist package suitable for healing and family travel. Through this research, the destination image of Gangwon-do was identified and a tourism marketing strategy was presented to improve competitiveness. It also provided a theoretical basis for the use of the big data of tourism consumers in the field of tourism business.

A Study on Social Perception of Young Children with Disabilities through Social Media Big Data Analysis (소셜 미디어 빅데이터 분석을 통한 장애 유아에 대한 사회적 인식 연구)

  • Kim, Kyoung-Min
    • Journal of the Korea Convergence Society
    • /
    • v.13 no.2
    • /
    • pp.1-12
    • /
    • 2022
  • The purpose of this study is to identify the social perception characteristics of young children with disabilities over the past decade. For this purpose, Textom, an Internet-based big data analysis system was used to collect data related to young children with disabilities posted on social media. 50 keywords were selected in the order of high frequency through the data cleaning process. For semantic network analysis, centrality analysis and CONCOR analysis were performed with UCINET6, and the analyzed data were visualized using NetDraw. As a result, the keywords such as 'education, needs, parents, and inclusion' ranked high in frequency, degree, and eigenvector centrality. In addition, the keywords of 'parent, teacher, problem, program, and counseling' ranked high in betweenness centrality. In CONCOR analysis, four clusters were formed centered on the keywords of 'disabilities, young child, diagnosis, and programs'. Based on these research results, the topics on social perception of young children with disabilities were investigated, and implications for each topic were discussed.

Extracting of Interest Issues Related to Patient Medical Services for Small and Medium Hospital by SNS Big Data Text Mining and Social Networking (중소병원 환자의료서비스에 관한 관심 이슈 도출을 위한 SNS 빅 데이터 텍스트 마이닝과 사회적 연결망 적용)

  • Hwang, Sang Won
    • Korea Journal of Hospital Management
    • /
    • v.23 no.4
    • /
    • pp.26-39
    • /
    • 2018
  • Purposes: The purpose of this study is to analyze the issue of interest in patient medical service of small and medium hospitals using big data. Methods: The method of this study was implemented by data mining and social network using SNS big data. The analysis tool were extracted key keywords and analyzed correlation by using Textom, Ucinet6 and NetDraw program. Findings: In the results of frequency, the network-centered and closeness centrality analysis, It was shown that the government center is interested in the major explanations and evaluations of the technology, information, security, safety, cost and problems of small and medium hospitals, coping with infections, and actual involvement in bank settlement. And, were extracted care for disabilities such as pediatrics, dentistry, obstetrics and gynecology, dementia, nursing, the elderly, and rehabilitation. Practical Implications: Future studies will be more useful if analyzed the needs of customers for medical services in the metropolitan area and provinces may be different in the small and medium hospitals to be studied, further classification studies.

Big Data Utilization and Policy Suggestions in Public Records Management (공공기록관리분야의 빅데이터 활용 방법과 시사점 제안)

  • Hong, Deokyong
    • Journal of Korean Society of Archives and Records Management
    • /
    • v.21 no.4
    • /
    • pp.1-18
    • /
    • 2021
  • Today, record management has become more important in management as records generated from administrative work and data production have increased significantly, and the development of information and communication technology, the working environment, and the size and various functions of the government have expanded. It is explained as an example in connection with the concept of public records with the characteristics of big data and big data characteristics. Social, Technological, Economical, Environmental and Political (STEEP) analysis was conducted to examine such areas according to the big data generation environment. The appropriateness and necessity of applying big data technology in the field of public record management were identified, and the top priority applicable framework for public record management work was schematized, and business implications were presented. First, a new organization, additional research, and attempts are needed to apply big data analysis technology to public record management procedures and standards and to record management experts. Second, it is necessary to train record management specialists with "big data analysis qualifications" related to integrated thinking so that unstructured and hidden patterns can be found in a large amount of data. Third, after self-learning by combining big data technology and artificial intelligence in the field of public records, the context should be analyzed, and the social phenomena and environment of public institutions should be analyzed and predicted.

Facilitating Conditions in Adopting Big Data Analytics at Medical Aid Organizations in South Africa

  • VELA, Junior Vela;SUBRAMANIAM, Prabhakar Rontala;OFUSORI, Lizzy Oluwatoyin
    • The Journal of Industrial Distribution & Business
    • /
    • v.13 no.11
    • /
    • pp.1-10
    • /
    • 2022
  • Purpose: This study measures the influence of facilitating conditions on employees' attitudes towards the adoption of big data analytics by selected medical aid organizations in Durban. In the health care sector, there are various sources of big data such as patients' medical records, medical examination results, and pharmacy prescriptions. Several organizations take the benefits of big data to improve their performance and productivity. Research design, data, and methodology: A survey research strategy was conducted on some selected medical aid organizations. A non-probability sampling and the purposive sampling technique were adopted in this study. The collected data was analysed using version 23 of Statistical Package for Social Science (SPSS) Results: the results show that the "facilitating conditions" have a positive influence on employees' attitudes in the adoption of big data analytics Conclusions: The findings of this study provide empirical and scientific contributions of the facilitating conditions issues regarding employee attitudes toward big data analytics adoption. The findings of this study will add to the body of knowledge in this field and raise awareness, which will spur further research, particularly in developing countries.

Big Data and U-City Services (빅데이터와 U-City 서비스)

  • Lee, Hyun-Ku;Oh, Jay In
    • The Journal of Bigdata
    • /
    • v.2 no.1
    • /
    • pp.71-75
    • /
    • 2017
  • The topic of big data has gained attention from the industry and the academics, because of the revitalization of social network services. The purpose of this study is to analyze the application cases of big data according to the categories of U-City services. The result from this study is that inside and unstructured information is more applied than outside and structured information in order to generate big data.

  • PDF

Evaluating Conversion Rate from Advertising in Social Media using Big Data Clustering

  • Alyoubi, Khaled H.;Alotaibi, Fahd S.
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.7
    • /
    • pp.305-316
    • /
    • 2021
  • The objective is to recognize the better opportunities from targeted reveal advertising, to show a banner ad to the consumer of online who is most expected to obtain a preferred action like signing up for a newsletter or buying a product. Discovering the most excellent commercial impression, it means the chance to exhibit an advertisement to a consumer needs the capability to calculate the probability that the consumer who perceives the advertisement on the users browser will acquire an accomplishment, that is the consumer will convert. On the other hand, conversion possibility assessment is a demanding process since there is tremendous data growth across different information dimensions and the adaptation event occurs infrequently. Retailers and manufacturers extensively employ the retail services from internet as part of a multichannel distribution and promotion strategy. The rate at which web site visitors transfer to consumers is low for online retail, out coming in high customer acquisition expenses. Approximately 96 percent of web site users concluded exclusive of no shopper purchase[1].This category of conversion rate is collected from the advertising of social media sites and pages that dataset must be estimating and assessing with the concept of big data clustering, which is used to group the particular age group of people along with their behavior. This makes to identify the proper consumer of the production which leads to improve the profitability of the concern.

Recommended Chocolate Applications Based On The Propensity To Consume Dining outside Using Big Data On Social Networks

  • Lee, Tae-gyeong;Moon, Seok-jae;Ryu, Gihwan
    • International Journal of Advanced Culture Technology
    • /
    • v.8 no.3
    • /
    • pp.325-333
    • /
    • 2020
  • In the past, eating outside was usually the purpose of eating. However, it has recently expanded into a restaurant culture market. In particular, a dessert culture is being established where people can talk and enjoy. Each consumer has a different tendency to buy chocolate such as health, taste, and atmosphere. Therefore, it is time to recommend chocolate according to consumers' tendency to eat out. In this paper, we propose a chocolate recommendation application based on the tendency to eat out using data on social networks. To collect keyword-based chocolate information, Textom is used as a text mining big data analysis solution.Text mining analysis and related topics are extracted and modeled. Because to shorten the time to recommend chocolate to users. In addition, research on the propensity of eating out is based on prior research. Finally, it implements hybrid app base.