• 제목/요약/키워드: Social Analytics

검색결과 126건 처리시간 0.024초

BPAF2.0: 프로세스기반 소셜 네트워크 마이닝을 위한 비즈니스 프로세스 분석로그 포맷의 확장 표준 (BPAF2.0: Extended Business Process Analytics Format for Mining Process-driven Social Networks)

  • 전명훈;안현;김광훈
    • 한국통신학회논문지
    • /
    • 제36권12B호
    • /
    • pp.1509-1521
    • /
    • 2011
  • 비즈니스 프로세스 및 워크플로우 기술의 국제표준화기구인 WfMCl)에서는 최근 비즈니스 프로세스 인텔리전스 마이닝 분야에 대한 산업체의 관심이 증가함에 따라 프로세스 실행이벤트로그 표준포맷인 비즈니스 프로세스 분석로그 포맷, BPAF2) 1.0을 공식적으로 발표한 바 있다. 즉, 비즈니스 프로세스 인텔리전스 마이닝 기술은 비즈니스 프로세스 모델의 실행이벤트로그로부터 제어흐름, 데이터흐름, 역할흐름, 수행자흐름 등의 흐름중심의 인텔리전스와 최근에 관심이 집중되는 프로세스기반 소셜네트워크, 소속성네트워크 등의 관계중심의 인텔리전스를 마이닝하는 일련의 알고리즘들과 분석기법들로 구성되는데 현재의 표준포맷인 BPAF 1.0은 비즈니스 프로세스의 제어흐름 인텔리전스 마이닝에 초점 맞추고 있어 최근에 관심이 집중되는 관계중심의 인텔리전스 마이닝을 지원할 수가 없다. 따라서, 본 표준화 논문에서는 제어흐름 인텔리전스 이외에 데이터흐름, 역할흐름, 수행자흐름의 흐름 중심 인텔리전스 뿐만 아니라 프로세스기반 소셜네트워크, 소속성 네트워크의 관계중심 인텔리전스의 마이닝을 지원할 수 있도록 기존의 BPAF 1.0 표준포맷을 확장한 BPAF 2.0 표준포맷을 제안한다. 특히, 본 논문에서 제안하는 BPAF 2.0은 한국정보통신기술협회 표준총회의 e 비즈니스 프로젝트 그룹을 통한 국내 표준안의 기반기술이 될 뿐 만 아니라 BPAF 1.0을 제정한 WfMC 국제표준화기구의 국제 표준안의 확장에 기여할 것이라고 판단한다.

Safeguarding Korean Export Trade through Social Media-Driven Risk Identification and Characterization

  • Sithipolvanichgul, Juthamon;Abrahams, Alan S.;Goldberg, David M.;Zaman, Nohel;Baghersad, Milad;Nasri, Leila;Ractham, Peter
    • Journal of Korea Trade
    • /
    • 제24권8호
    • /
    • pp.39-62
    • /
    • 2020
  • Purpose - Korean exports account for a vast proportion of Korean GDP, and large volumes of Korean products are sold in the United States. Identifying and characterizing actual and potential product hazards related to Korean products is critical to safeguard Korean export trade, as severe quality issues can impair Korea's reputation and reduce global consumer confidence in Korean products. In this study, we develop country-of-origin-based product risk analysis methods for social media with a specific focus on Korean-labeled products, for the purpose of safeguarding Korean export trade. Design/methodology - We employed two social media datasets containing consumer-generated product reviews. Sentiment analysis is a popular text mining technique used to quantify the type and amount of emotion that is expressed in the text. It is a useful tool for gathering customer opinions regarding products. Findings - We document and discuss the specific potential risks found in Korean-labeled products and explain their implications for safeguarding Korean export trade. Finally, we analyze the false positive matches that arise from the established dictionaries that were used for risk discovery and utilize these classification errors to suggest opportunities for the future refinement of the associated automated text analytic methods. Originality/value - Various studies have used online feedback from social media to analyze product defects. However, none of them links their findings to trade promotion and the protection of a specific country's exports. Therefore, it is important to fill this research gap, which could help to safeguard export trade in Korea.

Social Media Analytics to Understand the Construction Industry Sentiments

  • Shrestha, K. Joseph;Mani, Nirajan;Kisi, Krishna P.;Abdelaty, Ahmed
    • 국제학술발표논문집
    • /
    • The 9th International Conference on Construction Engineering and Project Management
    • /
    • pp.712-720
    • /
    • 2022
  • The use of social media to disseminate news and interact with project stakeholders is increasing over time in the construction industry. Such social media data can be analyzed to get useful insights of the industry such as demands of new housing construction and satisfaction of construction workers. However, there has been a limited attempts to analyze social media data related to the construction industry. The objective of this study is to collect and analyze construction related tweets to understand the overall sentiments of individuals and organizations about the construction industry. The study collected 87,244 tweets from April 6, 2020, to April 13, 2020, which had hashtags relevant to the construction industry. The tweets were then analyzed to evaluate its sentiments polarity (positive or negative) and sentiment intensity or scores (-1 to +1). Descriptive statistics were produced for the tweets and the sentiment scores were visualized in a scatterplot to show the trend of the sentiment scores over time. The results shows that the overall sentiment score of all the tweets was slightly positive (0.0365). Negative tweets were retweeted and marked as favorite by more users on average than the positive ones. More specifically, the tweets with negative sentiments were retweeted by 2,802 users on average compared to the tweets with positive sentiments (247 average retweet count). This study can potentially be expanded in the future to produce a real time indicator of the construction market industry such as the increased availability of construction jobs, improved wage rates, and recession.

  • PDF

Women's Employment in Industries and Risk of Preeclampsia and Gestational Diabetes: A National Population Study of Republic of Korea

  • Jeong-Won Oh;Seyoung Kim;Jung-won Yoon;Taemi Kim;Myoung-Hee Kim;Jia Ryu;Seung-Ah Choe
    • Safety and Health at Work
    • /
    • 제14권3호
    • /
    • pp.272-278
    • /
    • 2023
  • Background: Some working conditions may pose a higher physical or psychological demand to pregnant women leading to increased risks of pregnancy complications. Objectives: We assessed the association of woman's employment status and the industrial classification with obstetric complications. Methods: We conducted a national population study using the National Health Information Service database of Republic of Korea. Our analysis encompassed 1,316,310 women who experienced first-order live births in 2010-2019. We collected data on the employment status and the industrial classification of women, as well as their diagnoses of preeclampsia (PE) and gestational diabetes mellitus (GDM) classified as A1 (well controlled by diet) or A2 (requiring medication). We calculated odds ratios (aORs) of complications per employment, and each industrial classification was adjusted for individual risk factors. Results: Most (64.7%) were in employment during pregnancy. Manufacturing (16.4%) and the health and social (16.2%) work represented the most prevalent industries. The health and social work exhibited a higher risk of PE (aOR = 1.11, 95% confidence interval [CI]: 1.03-1.21), while the manufacturing industry demonstrated a higher risk of class A2 GDM (1.20, 95% CI: 1.03-1.41) than financial intermediation. When analyzing both classes of GDM, women who worked in public administration and defense/social security showed higher risk of class A1 GDM (1.04, 95% CI: 1.01, 1.07). When comparing high-risk industries with nonemployment, the health and social work showed a comparable risk of PE (1.02, 95% CI: 0.97, 1.07). Conclusion: Employment was associated with overall lower risks of obstetric complications. Health and social service work can counteract the healthy worker effect in relation to PE. This highlights the importance of further elucidating specific occupational risk factors within the high-risk industries.

소셜 감성이 개별 기업 주식수익률에 미치는 비대칭적 영향 분석 (Asymmetric Effect of Social Sentimental on an Individual Stock Price Return)

  • 김세완;박지원;김영민;함희경
    • 경영정보학연구
    • /
    • 제22권4호
    • /
    • pp.59-74
    • /
    • 2020
  • 본 연구는 소셜 감성(social sentimental)을 긍정 및 부정적 의견으로 구분하여 이들 의견이 개별 기업의 주식수익률에 미치는 영향이 비대칭적인지(asymmetric) 분석하였다. 이를 위하여 한국거래소에서 활발하게 거래되고 트위터 의견도 충분한 기아차, 아모레퍼시픽, 포스코, 한국전력 등 4개 기업을 분석대상으로 하였다. 주요 분석 결과는 다음과 같다. 첫째, 긍정적 의견은 개인투자자의 거래 비중이 상대적으로 낮은 아모레퍼시픽의 주식수익률에는 영향을 주지 못한 반면 나머지 3개 기업의 주식수익률에는 유의한 양(+)의 영향을 주었다. 둘째, 부정적 의견은 4기업의 주식수익률에 모두 유의하게 음(-)의 영향을 주는 것으로 나타났다. 특히 부정적 의견이 긍정적 의견보다 주식수익률에 미치는 영향이 더 크게 나타났으며, 이는 투자자들이 손실회피 성향 등으로 수익보다 손실에 더 민감하기 때문으로 보인다. 본 연구는 트위터의 긍정 또는 부정적 의견이 주식수익률에 비대칭적(asymmetric)으로 영향을 미치는 것을 발견하였으며, 이는 트위터의 의견을 투자자 심리(sentiment) 대용변수(proxy)로 활용할 수 있음을 보여준다.

PATROL 교수학습모형 기반의 디지털교과서 기능 설계 (Design of Digital Textbook Functions Based on the PATROL Instructional Model)

  • 정영식
    • 정보교육학회논문지
    • /
    • 제20권2호
    • /
    • pp.189-196
    • /
    • 2016
  • PATROL은 디지털교과서를 활용하여 플립클래스룸을 적용한 교수학습모형으로서 계획, 실행, 추적, 추천, 요구, 안내 단계로 구성되어 있다. 현재의 디지털교과서는 서책형교과서의 내용과 함께 추가적인 멀티미디어 자료를 보여주는 기능을 중심으로 개발되었기 때문에 교사들이 학생들의 가정 학습 결과를 파악하기가 어렵다. 따라서 본 연구에서는 학생들의 학습 상황을 분석하고, 진단하고, 처치할 수 있도록 PATROL 모형 기반의 디지털교과서 기능을 설계하였다. 디지털교과서 기반의 학습 분석 기능은 관계 분석, 평가 분석, 예측 분석, 적응 분석, 정보 분석 등 5단계로 구성하였으며, 이 기능을 SEE-PAD라 명명하였다. 또한, 단계별 기능을 구체화하기 위해 Use Case 다이어그램과 시퀀스 다이어그램을 제시하였다.

Towards Sustainable Environmental Policy and Management in the Fourth Industrial Revolution: Evidence from Big Data Analytics

  • CHOI, Choongik;KIM, Chunil;KIM, Chulmin
    • The Journal of Asian Finance, Economics and Business
    • /
    • 제6권3호
    • /
    • pp.185-192
    • /
    • 2019
  • This study is to explore the relationship between the Fourth Industrial Revolution and the environment using the big data methodology. We scrutinize the trend of the Fourth Industrial revolution, in association with the environment, and provide implications for a more desirable future environmental policy. The results show that the Industrial Revolution has been generally perceived as negative to environment before the 2010s, while it has been widely regarded as positive after the period. It is highly expected that the Fourth Industrial Revolution will be capable of functioning as a new alternative to enhance the quality of the biophysical and social environment. This study justifies that the new wave of technological development may serve as a cure for the enhancement of the environmental quality. The positive linkage between the new technological development and the environment from this study clearly indicates that the environmental industry and environmental technologies will be key economic factors in the next-generation society. They should be of critical importance in shaping our cities into clearer and greener spaces, and people will continuously depend on the development of new environmental technologies in order to correct environmental damages.

빅데이터 분석을 통한 한국과 미국의 스타벅스 비교 분석 (A Comparison of Starbucks between South Korea and U.S.A. through Big Data Analysis)

  • 조아라;김학선
    • 한국조리학회지
    • /
    • 제23권8호
    • /
    • pp.195-205
    • /
    • 2017
  • The purpose of this study was to compare the Starbucks in South Korea with Starbucks in U.S.A through the semantic network analysis of big data by collecting online data with SCTM(Smart Crawling & Text Mining) program which was developed by big data research institute at Kyungsung University, a data collecting and processing program. The data collection period was from January 1st 2014 to December 7th 2017, and packaged Netdraw along with UCINET 6.0 were utilized for data analysis and visualization. After performing CONCOR(convergence of iterated correlation) analysis and centrality analysis, this study illustrated the current characteristics of Starbucks for Korea and U.S.A reflected by the social network and the differences between Korea and U.S.A. Since the Starbucks was greatly developed, especially in Korea. this study also was supposed to provide significant and social-network oriented suggestions for Starbucks USA, Starbucks Korea and also the whole coffee industry. Also this study revealed that big data analytics can generate new insights into variables that have been extensively studied in existing hospitality literature. In addition, implications for theory and practice as well as directions for future research are discussed.

R을 이용한 성경 데이터의 빈도와 소셜 네트워크 분석 (Frequency and Social Network Analysis of the Bible Data using Big Data Analytics Tools R)

  • 반재훈;하종수
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2018년도 추계학술대회
    • /
    • pp.93-96
    • /
    • 2018
  • 데이터를 저장하고 분석하여 새로운 지식을 얻을 수 있는 빅데이터 처리기술은 사회의 여러 분야에서 중요성이 강조되고 있으며 정보통신기술 분야의 핵심 이슈로 부각되면서 관련 기술에 대한 관심이 증가하고 있다. 이러한 빅데이터를 분석할 수 있는 도구인 R은 통계 기반의 정보 분석을 가능하게 하는 언어와 환경이다. 본 논문에서는 이를 이용하여 성경데이터를 분석한다. R을 이용하여 어떠한 텍스트가 분포되어 있는지를 빈도 조사를 수행하며 소셜 네트워크 분석을 통해 성경을 분석한다.

  • PDF

Developing a Web-Based Knowledge Product Outsourcing System at a University

  • Onte, Mark B.;Marcial, Dave E.
    • Journal of Information Processing Systems
    • /
    • 제9권4호
    • /
    • pp.548-566
    • /
    • 2013
  • The availability of technology and the abundance of experts in universities create an ample opportunity to provide a venue that allows a knowledge seeker to easily connect with and request advice from university experts. On the other hand, outsourcing provides opportunities and remains one of the emerging trends in organizations, and can very clearly observed in the Philippines. This paper describes the development of a reliable web-based approach to Knowledge Product Outsourcing (KPO) services in the Silliman Online University Learning system. The system is called an "e-Knowledge Box."It integrates Web 2.0 technologies and mechanisms, such as instant messaging, private messaging, document forwarding, video conferencing, online payments, net meetings, and social collaboration together into one system. Among the tools used are WAMP Server 2.0, PHP, BlabIM, Wordpress 3.0, Video Whisper, Red5, Adobe Dreamweaver CS4, and Virtual Box. The proposed system is integrated with the search engine in URLs, Web feeds, email links, social bookmarking, search engine sitemaps, and Web Analytics Direct Visitor Reports. The site demonstrates great web usability and has an excellent rating in functionality, language and content, online help and user guides, system and user feedback, consistency, and architectural and visual clarity. Likewise, the site was was rated as being very good for the following items: navigation navigation, user control, and error prevention and correction.