• Title/Summary/Keyword: Snowplow

Search Result 10, Processing Time 0.024 seconds

Experimental study on practical automatic snowplows

  • Ahn, Doo-Sung;Choi, Jae-Weon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.160.1-160
    • /
    • 2001
  • In this study, control technique of two types of automatic snowplow was experimentally investigated. One is a remote-controlled snowplow used for removing snow around houses, and the other is an autonomous snowplow for use in wide, open spaces such as a parking lot of a large-scale retail store. A commercially available snowplow was modified to enable remote control by the use of a personal handy-phone system. The autonomous controller utilizes a vision sensor that consists of a CCD video camera and a computer for image processing. In addition, design of a practical landmark was examined.

  • PDF

Comparison of Three-dimensional Kinematic Changes of the Lower Extremity between the Two Different Braking Distances of Snowplow in Alpine Skiing

  • Kim, Joo-Nyeon;Kim, Jin-Hae;Ryu, Jiseon;Yoon, Sukhoon;Park, Sang-Kyoon
    • Korean Journal of Applied Biomechanics
    • /
    • v.26 no.4
    • /
    • pp.361-367
    • /
    • 2016
  • Objective: The aim of this study was to compare three-dimensional kinematic changes of the lower extremity between the two different braking distances during snowplow in alpine skiing. Method: Six alpine ski instructors (age: $25.3{\pm}1.5yr$, height: $169.3{\pm}2.9cm$, weight: $66.2{\pm}5.9kg$, career: $4.2{\pm}2.9yr$) participated in this study. Each skier was asked to perform snowplow on the two different braking distances (2 and 4 m). Results: Snowplow and edging angles (p = .006 and p = .005), ankle adduction and inversion (p = .033 and p = .002), knee extension (p = .003), and hip abduction and internal rotation (p = .043 and p = .006) were significantly greater in the 2 m than in the 4 m braking distance. Conclusion: Based on our results, we suggest that skiers should make greater snowplow and edging angles on the shorter braking distance. In this situation, ankle joint adduction/inversion angle and hip joint internal-rotation make greater snowplow angle, and hip joint abduction make greater edging angle. In addition, greater knee joint extension angle may lead to more posteriorly positioned center of mass.

Speed of Current Sheath in Pulsed Discharge Plasma Device (펄스형 방전플라스마 장치에서 current sheath의 속력)

  • Choi, Woon Sang;Choi, Ho Seong
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.12 no.1
    • /
    • pp.69-74
    • /
    • 2007
  • The axial speed of plasma current sheath was measured with Rogowski coils and compared with the theory of snowplow model. Current sheath speed is measured with $10^6cm/s$. The speed of light gas, $H_2$ and He were similar to the theory of model, but the heavy gas, Ar was not similar to the theory. The disagreement of the heavy gas was guessed as a results of the instability of the current sheath.

  • PDF

Simulation and control of rotary snow plow

  • Kubota, Yuzuzu;Yamasita, Mitsuhisa;Hiromitsu-Hikita;Watabe, Tomoji
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1988.10b
    • /
    • pp.869-874
    • /
    • 1988
  • The operational control of the rotary snowplow is considered to improve its working efficiency. The speed of the rotary snowplow is controlled, so that the load to the rotary snowplow is kept constant. As the load can not directly be detected, some items considered for the controlled variable are, for example, the engine revolution, the load pressure and etc. In order to examine these, the working simulation of the rotary snowplow was considered by introducing the experimental equation of the load. The control methods were examined by means of the simple digital control using the personal computer. These control methods were compared with simulations and experiments. Consequently, the working efficiency is improved about 20% than the manual operation.

  • PDF

Particle Swarm Optimization for Snowplow Route Allocation and Location of Snow Control Material Storage (Particle Swarm Optimization을 이용한 제설차량 작업구간 할당 및 제설전진기지 위치 최적화)

  • Park, U-Yeol;Kim, Geun-Young;Kim, Sun-Young;Kim, Hee-Jae
    • Journal of the Korea Institute of Building Construction
    • /
    • v.17 no.4
    • /
    • pp.369-375
    • /
    • 2017
  • This study suggests PSO(Particle Swarm Optimization) algorithm that optimizes the snowplow route allocation and the location of the snow control material storage to improve the efficiency in snow removal works. The modified PSO algorithm for improving the search capacity is proposed, and this study suggests the solution representation, the parameter setting, and the fitness function for the given optimization problems. Computational experiments in real-world case are carried out to justify the proposed method and compared with the traditional PSO algorithms. The results show that the proposed algorithms can find the better solution than the traditional PSO algorithms by searching for the wider solution space without falling into the local optima. The finding of this study is efficiently employed to solve the optimization of the snowplow route allocation by minimizing the workload of each snowplow to search the location of the snow control material storage as well.

Development of Automated Electric Snowplow by Using Clutch Bobbin for Improving Durability (내구성 향상을 위한 클러치 보빈 적용 고강성 전동식 제설기 개발)

  • Kim, Kee Joo;Park, Jun-Hyub
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.11
    • /
    • pp.949-954
    • /
    • 2016
  • When a snowplow is operating in the up or down direction, the sensor stops the movement automatically and the wire could be broken from an endless drive in the reverse direction impact or conversely winding wire. In the present study, a new bobbin was designed to ensure the durability of snowplows; in this design, the bobbin plays the role of a clutch during power transfer or idling. This will protect the blade of the snowplow during an impact and maintain close contact of the blade with the road. Therefore, the new technology to eliminate the tension and fatigue of the wire is suggested by winding a chain instead of the wire in the newly designed bobbin. From these, it was developed to extend the life of the snowplow without causing damages to the vehicle.

Neural Network Control Technique for Automatic Four Wheel Steered Highway Snowplow Robotic Vehicles

  • Jung, Seul;Lasky, Ty;Hsia, T.C.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1014-1019
    • /
    • 2005
  • In this paper, a neural network technique for automatic steering control of a four wheel drive autonomous highway snowplow vehicle is presented. Controllers are designed by the LQR method based on the vehicle model. Then, neural network is used as an auxiliary controller to minimize lateral tracking error under the presence of load. Simulation studies of LQR control and neural network control are conducted for the vehicle model under a virtual snowplowing situation. Tracking performances are also compared for two and four wheeled steering vehicles.

  • PDF

Intelligent Technique Application for Autonomous Lateral Position Control of an Unmanned 4 Wheel Steered Snowplow Robotic Vehicle

  • Jung, Seul;Hsia, T.C.
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.6 no.3
    • /
    • pp.132-138
    • /
    • 2011
  • This paper presents an intelligent control approach for lateral position control of an autonomous four wheel steered snowplowing robotic vehicle. The vehicle is built for removing snow on the highway. Dynamics of the vehicle is derived and linearized for LQR control. Lateral position is controlled by the LQR method first, then the neural network control technique is introduced to improve tracking performances under the presence of load. The feasibility of using four wheel steering control is investigated by simulation studies of lateral position tracking of the Ford F-250 truck model. Performances of a LQR control method and a neural network control method under virtual snowplowing situation are compared.

DYNAMICAL EVOLUTION OF SUPERNOVA REMNANTS BREAKING THROUGH MOLECULAR CLOUDS

  • Cho, Wankee;Kim, Jongsoo;Koo, Bon-Chul
    • Journal of The Korean Astronomical Society
    • /
    • v.48 no.2
    • /
    • pp.139-154
    • /
    • 2015
  • We carry out three-dimensional hydrodynamic simulations of the supernova remnants (SNRs) produced inside molecular clouds (MCs) near their surface using the HLL code (Harten et al. 1983). We explore the dynamical evolution and the X-ray morphology of SNRs after breaking through the MC surface for ranges of the explosion depths below the surface and the density ratios of the clouds to the intercloud media (ICM). We find that if an SNR breaks out through an MC surface in its Sedov stage, the outermost dense shell of the remnant is divided into several layers. The divided layers are subject to the Rayleigh-Taylor instability and fragmented. On the other hand, if an SNR breaks through an MC after the remnant enters the snowplow phase, the radiative shell is not divided to layers. We also compare the predictions of previous analytic solutions for the expansion of SNRs in stratified media with our onedimensional simulations. Moreover, we produce synthetic X-ray surface brightness in order to research the center-bright X-ray morphology shown in thermal composite SNRs. In the late stages, a breakout SNR shows the center-bright X-ray morphology inside an MC in our results. We apply our model to the observational results of the X-ray morphology of the thermal composite SNR 3C 391.

Study on a Coaxial Plasma Gun (III)

  • Bak, Hae-Ill;In, Sang-Ryul;Chung, Kie-Hyung;Lee, Un-Chul
    • Nuclear Engineering and Technology
    • /
    • v.12 no.3
    • /
    • pp.163-170
    • /
    • 1980
  • A Mather type plasms gun is operated at below 1 torr with a energy storage system (4KJ, 16.5KV, 35nH) to study the conditions of the efficient plasma focus. When the $D_2$ gas filling pressure is 0.18 torr and the stored energy is 3.8KJ, the discharge current of max. 180KA is obtained and the average axial velocity of the plasma is about $7cm/\mu\textrm{s}$. This is lower than the calculated velocity with above conditions by the snow-plow model. The discrepancy is due to the currents flowing over the insulator surface. The plasma focus occurs at low pressure compared with the results obtained by Bruzzone. The reasons are such that the plasma gun employed in this experiment is large for tile stored energy and the concentration of the residual gas is comparatively high. It is confirmed by a Long counter that the neutrons are generated from the dense plasma focus.

  • PDF