• Title/Summary/Keyword: SnCu

Search Result 1,104, Processing Time 0.032 seconds

A Study on the Characteristics of Sn-Ag-X Solder Joint -The Wettability of Sn-Ag-Bi-In Solder to Plated Substrates- (Sn-Ag-X계 무연솔더부의 특성 연구 -기판 도금층에 따른 Sn-Ag-Bi-In 솔더의 젖음특성-)

  • 김문일;문준권;정재필
    • Journal of Surface Science and Engineering
    • /
    • v.35 no.1
    • /
    • pp.11-16
    • /
    • 2002
  • As environmental concerns increasing, the electronics industry is focusing more attention on lead free solder alternatives. In this research, we have researched wettability of intermediate solder of Sn3Ag9Bi5In, which include In and Bi and has similar melting temperature to Sn37Pb eutectic solder. We investigated the wetting property of Sn3Ag9Bi5In. To estimate wettability of Sn3Ag9Bi5In solder on various substrates, the wettability of Sn3Ag9Bi5In solder on high-pure Cu-coupon was measured. Cu-coupon that plated Sn, Ni and Au/Ni and Si-wafer adsorbed Ni/Cu under bump metallurgy on one side. As a result, the wetting property of Sn3Ag9Bi5In solder is a little better than that of Sn37Pb and Sn3.5Ag.

A Study on Characteristics of Alloy Materials through Reproduction Experiment of High-tin Bronze Mirror with Geometric Designs (고주석 청동정문경(靑銅精文鏡)의 재현실험을 통한 합금재료의 특성 연구)

  • Lee, In Kyeong;Jo, Young Hoon;Cho, Nam Chul
    • Journal of Conservation Science
    • /
    • v.35 no.5
    • /
    • pp.508-517
    • /
    • 2019
  • This study analyzed on alloys and by-product samples produced through the reproduction experiment of bronze mirror with geometric designs. The alloy ratio used in the first and second reproduction experiments was based on the analysis results of bronze mirror with geometric designs(Cu 61.68%, Sn 32.25%, Pb 5.46%) which is the national treasure No. 141. As a result of portable X-ray fluorescence analysis on the raw materials used in the reproduction experiment, the contents of copper raw materials were 98.85 wt% for Cu, tin raw materials were 99.03 wt% for Sn, and lead raw materials were 70.19 wt% for Pb, and 21.81 wt% for Sn. Sn and Pb were added 5 wt% more considering the evaporation amount of tin and lead during alloy melting. The result produced by the first reproduction experiment were 58.75 wt% for Cu, 36.87 wt% for Sn, 4.39 wt% for Pb, and the other result produced by the second reproduction experiment were 58.66 wt% for Cu, 35.89 wt% for Sn, and 5.50 wt% for Pb. The composition of the components was about 3.00 wt% in Cu and Sn respectively, and the microstructure was similar to the previous studies because the δ phase was observed mainly. The results of this study will be used as basic data for the materialistic characteristics of ancient bronze mirror in the future.

Evaluation on Reliability of High Temperature Lead-free Solder for Automotive Electronics (자동차 전장 보드용 고온 무연 솔더의 신뢰성 평가)

  • Ko, Yong-Ho;Yoo, Se-Hoon;Lee, Chang-Woo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.17 no.4
    • /
    • pp.35-40
    • /
    • 2010
  • In this study, the reliability of thermal shock, thermal cycle, and complex vibration test at high temperature were examined for 3 types of lead-free solder alloys, Sn-3.5Ag, Sn-0.7Cu and Sn-5.0Sb. For the reliability test, daisychained BGA chips with ENIG-finished Cu pad was assembled with the three lead-free solders on OSP-finished PCBs. Among the 3 types solder alloys, Sn-3.5Ag solder alloy showed the highest degradation rate of electrical resistance and joint strength. On the other hand, Sn-0.7Cu solder alloy had high stability after the reliability tests.

The Solderability and Mechanical Properties of In, Bi Added Sn-9Zn/Cu Joint (In, Bi가 첨가된 Sn-9wt.%Zn/Cu 접합부의 납땜성 및 기계적 성질)

  • Baek, Dae-Hwa;Lee, Kyung-Ku;Lee, Doh-Jae
    • Journal of Korea Foundry Society
    • /
    • v.20 no.2
    • /
    • pp.116-121
    • /
    • 2000
  • Interfacial reaction and mechanical properties between Sn-Zn-X ternary alloys(X : 3wt.%In, 4wt.%Bi) and Cu-substrate were studied. Cu/solder joints were subjected to aging treatments for up to 50days to see interfacial reaction at $100^{\circ}C$ and then were examined changes of microstructure and interfacial compound by optical microscopy, SEM and EDS. Cu/solder joints were aged to 30days and then loaded to failure at cross head speed of 0.3 mm $min^{-1}$ to measure tensile strength. According to the results of the solderability test, additions of In and Bi in the Sn-9wt.%Zn solder improve the wetting characteristics of the alloy and lower the melting temperature. Through the EDS and XRD analysis of Cu/Sn-9wt.%Zn solder joint, it was concluded that the intermetallic compound was the ${\gamma}-Cu_5Zn_8$ phase. Cu-Zn intermetallics at Cu/solder interfaces played an important role in both the microstructure evolution and failure of solder joints. Cu/solder joint strength was decreased by aging treatment, and those phenomenon was closely related to the thickening of intermetallic layer at Cu/solder joints.

  • PDF

Study on Indium-free and Indium-reduced thin film solar absorber materials for photovoltaic application

  • Wibowo, Rachmat Adhi;Kim, Gyu-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.270-273
    • /
    • 2007
  • In this report, Indium-free and Indium-reduced thin film materials for solar absorber were studied in order to search alternative materials for thin film solar cell. The films of $Cu_2ZnSnSe_4$ and $Cu_2ZnSnSe_2$ were deposited using mixed binary chalcogenides powders. From the film bulk analysis result, it is observed that Cu concentration is a function of substrate temperature as well as CuSe mole ratio in the target. Under optimized conditions, $Cu_2ZnSnSe_4$ and $Cu_2ZnSnSe_2$ thin films grow with strong (112), (220/204) and (312/116) reflections. Films are found to exhibit a high absorption coefficient of $10^4$ $cm^{-1}$. $Cu_2ZnSnSe_4$ film shows a 1.5 eV band gap. On the other side, an increasing of optical band gap from 1.0 eV to 1.25 eV ($CuInSnSe_2$) is found to be proportional with an increasing of Zn concentration. All films have a p-type semiconductor characteristic with a carrier concentration in the order of $10^{14}$ $cm^{-3}$, a mobility about $10^1$ $cm^{2{\cdot}-1.}S^{-1}$ and a resistivity at the range of $10^2-10^6$ ${\Omega}{\cdot}m$.

  • PDF

Corrosion characteristics in stress and various environments with Sn addition to Cu pipe (구리 배관의 Sn 첨가에 따른 응력 및 다양한 환경에서의 부식 특성)

  • Serim Kim;Uijun Kim;Myeonghoon Lee;Seunghyo Lee
    • Journal of Surface Science and Engineering
    • /
    • v.57 no.3
    • /
    • pp.192-200
    • /
    • 2024
  • Cu as a heat exchanger tube is an important component in thermal fluid transfer. However, Cu tubes are exposed to stress in certain environments, leading to stress corrosion cracking (SCC). In this study, the effect of Sn addition on microstructure and corrosion characteristics was examined. The microstructural examination revealed the presence of columnar crystal and a grain refinement due to the addition of Sn. Electrochemical measurements showed that the 5 wt.% NH3 environment was the most vulnerable environment to Cu corrosion, and the corrosion current density increased as stress increased. The immersion test exhibited the formation of Cu2O and Cu(OH)2 corrosion product in 3.5 wt.% NaCl and 5 wt.% NH3 environments, respectively. Results indicated that Sn addition to Cu was an important factor in improving the mechanical strength.

Studies on the Interfacial Reaction between Electroless-Plated UBM (Under Bump Metallurgy) on Cu pads and Pb-Sn-Ag Solder Bumps (Cu pad위에 무전해 도금된 UBM (Under Bump Metallurgy)과 Pb-Sn-Ag 솔더 범프 계면 반응에 관한 연구)

  • Na, Jae-Ung;Baek, Gyeong-Uk
    • Korean Journal of Materials Research
    • /
    • v.10 no.12
    • /
    • pp.853-863
    • /
    • 2000
  • In this study, a new UBM materials system for solder flip chip interconnection of Cu pads were investigated using electroless copper (E-Cu) and electroless nickel (E-Ni) plating method. The interfacial reaction between several UBM structures and Sn-36Pb-2Ag solder and its effect on solder bump joint mechanical reliability were investigated to optimife the UBM materials design for solder bump on Cu pads. Fer the E-Cu UBM, continuous coarse scallop-like $Cu_{6}$ $Sn_{5}$ , intermetallic compound (IMC) was formed at the solder/E-Cu interface, and bump fracture occurred this interface under relative small load. In contrast, Fer the E-Ni/E-Cu UBM, it was observed that E-Ni effectively limited the growth of IMC at the interface, and the Polygonal $Ni_3$$Sn_4$ IMC was formed because of crystallographic mismatch between monoclinic $Ni_3$$Sn_4$ and amorphous E-Ni phase. Consequently, relatively higher bump adhesion strength was observed at E-Ni/E-Cu UBM than E-Cu UBM. As a result, it was fecund that E-Ni/E-Cu UBM material system was a better choice for solder flip chip interconnection on CU PadS.

  • PDF

Flip Chip Process for RF Packages Using Joint Structures of Cu and Sn Bumps (Cu 범프와 Sn 범프의 접속구조를 이용한 RF 패키지용 플립칩 공정)

  • Choi, J.Y.;Kim, M.Y.;Lim, S.K.;Oh, T.S.
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.16 no.3
    • /
    • pp.67-73
    • /
    • 2009
  • Compared to the chip-bonding process utilizing solder bumps, flip chip process using Cu pillar bumps can accomplish fine-pitch interconnection without compromising stand-off height. Cu pillar bump technology is one of the most promising chip-mounting process for RF packages where large gap between a chip and a substrate is required in order to suppress the parasitic capacitance. In this study, Cu pillar bumps and Sn bumps were electroplated on a chip and a substrate, respectively, and were flip-chip bonded together. Contact resistance and chip shear force of the Cu pillar bump joints were measured with variation of the electroplated Sn-bump height. With increasing the Sn-bump height from 5 ${\mu}m$ to 30 ${\mu}m$, the contact resistance was improved from 31.7 $m{\Omega}$ to 13.8 $m{\Omega}$ and the chip shear force increased from 3.8 N to 6.8 N. On the contrary, the aspect ratio of the Cu pillar bump joint decreased from 1.3 to 0.9. Based on the variation behaviors of the contact resistance, the chip shear force, and the aspect ratio, the optimum height of the electroplated Sn bump could be thought as 20 ${\mu}m$.

  • PDF

Impact Resistance Reliability of Sn-1.2Ag-0.5Cu-0.4In Solder Joints (Sn-1.2Ag-0.5Cu-0.4In 조성 솔더 접합부의 내 충격 신뢰성 평가)

  • Yu, A-Mi;Lee, Chang-Woo;Kim, Jeong-Han;Kim, Mok-Soon;Lee, Jong-Hyun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.226-226
    • /
    • 2008
  • 지난 10여년 동안 Sn-3.0Ag-0.5(wt%)Cu 합금은 대표 무연솔더 조성으로 다양한 전자제품의 실장 및 접합에 적용되어 왔으며, 그 신뢰성 역시 충분히 검증된 바 있다. 그러나 최근 Ag 가격의 급격한 상승과 솔더 접합부의 내 충격 신뢰성을 보다 향상시키고자 하는 업계의 동향은 Ag의 함량이 낮은 무연솔더 조성의 적용 확대를 유도하고 있다. 이에 따라 본 연구자들은 저 Ag 함유 무연슬더로 Sn-1.2Ag-0.5Cu-0.4In 조성을 제안한 바 있는데, 이는 Sn-3.0Ag-0.5Cu 조성 이상의 solderability를 가지면서도 그 금속원료 가격이 약 20% 가량 저렴한 특징을 가진다. 또한 열 싸이클링 (cycling) 테스트를 통한 슬더 조인트의 신뢰성을 평가한 결과, Sn-3.0Ag-0.5Cu에 크게 뒤떨어지지 않는 양호한 특성이 관찰되었다. 따라서 본 연구에서는 열 싸이클링 테스트와 더불어 최근 그 중요성이 지속적으로 커지고 있는 내 충격 신뢰성 평가 시험을 실시하여 개발된 4원계 무연솔더 조성의 기계적 특성을 기존 무연솔더 조성과 비교, 분석해 보았다. 각 솔더 조성은 솔더 볼 형태로 제조되어 CSP(Chip Scale Package) 상에 범핑 (bumping)되었으며, CSP를 PCB(Printed Circuit Board) 상에 실장하는 공정에서도 Sn-3.0Ag-0.5Cu 및 Sn-1.2Ag-0.5Cu-0.4In의 두 종류의 솔더 페이스트가 사용되었다. 본 연구에서의 내 충격 신뢰성 시험에는 자체 제작한 rod drop 시험기를 사용하였는데, 고정된 CSP 실장 board의 후면 부위를 일정한 높이에서 추를 반복적으로 자유 낙하시켜 급격한 충격을 주는 방식으로 실험을 실시하였다. 이 때 추의 무게는 30g, 낙하 높이는 10cm 였으며, 추의 낙하 시 측정된 board 의 휨 변위량은 약 0.7mm로 측정되었다. 사용된 CSP와 PCB 는 모두 daisy chain 방식으로 연결되어 있기 때문에 저항측정기를 사용한 간단한 실시간 저항 측정 방법으로 시험 이력에 따른 파단부의 발생 시점과 대략의 위치를 손쉽게 확인할 수 있었다. 솔더 조인트의 파단 기준 저항값으로 $1000\Omega$을 설정하였으며. 각 조건 당 5 개 이상의 샘플에 대해 평가를 실시한 후 그 평균값을 조사하였다. 시험 결과 제안된 Sn-1.2Ag-0.5Cu-0.4In 조성은 대표적인 저 Ag 함유 조성인 Sn-1.0Ag-0.5Cu에 비해서는 떨어지는 내 충격 신뢰성을 나타내었지만, 우수한 연성에 기인하여 Sn-3.0Ag-0.5Cu 조성에 비해서는 약 2 배 이상 우수한 신뢰성이 관찰되었다. 또한 CSP의 실장 시 Sn-3.0Ag-0.5Cu보다 Sn-1.2Ag-0.5Cu-0.4In 조성 솔더 페이스트를 적용한 경우에서 보다 우수한 내 충격 신뢰성을 나타내어 기본적으로 개발된 Sn-1.2Ag-0.5Cu-0.4In 솔더 페이스트가 Sn-3.0Ag-0.5Cu 조성의 기존 솔더 페이스트 보다 내 충격 신뢰성이 우수함을 검증할 수 있었다. 각 조성의 솔더 조인트를 $150^{\circ}C$ 에서 500시간 aging한 후 실시한 내 충격 신뢰성 평가에서는 모든 조성에서 그 신뢰성이 급감하는 경항을 나타내었으나, Sn-1.2Ag-0.5Cu-0.4In가 Sn-l.0Ag-0.5Cu보다도 그 상대적인 신뢰성이 우수한 것으로 관찰되었다. 이와 같이 aging 후 실시하는 충격시험은 가장 실제적인 상황과 유사한 조건이므로 상기의 실험 결과는 매우 고무적이었으며, 이에 대한 보다 면밀한 분석이 요청되었다. 마지막으로 파면 및 미세조직 관찰을 통하여 각 조성에서의 충격 파단 특성을 비교, 분석해 보았다.

  • PDF