• Title/Summary/Keyword: Sn-Pb-Ag solder

Search Result 175, Processing Time 0.038 seconds

A Study on $\mu$BGA Solder Joints Reliability Using Lead-free Solder Materials

  • Shin, Young-Eui;Lee, Jun-Hwan;Kon, Young-Wook;Lee, Chong-Won;Yun, Jun-Ho;Jung, Seug-Boo
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.7
    • /
    • pp.919-926
    • /
    • 2002
  • In this study, the numerical prediction of the thermal fatigue lie? of a $\mu$BGA (Micro Ball Grid Array) solder joint was focused. Numerical method was performed using the three-dimensional finite element analysis for various solder alloys such as Sn-37%Pb, Sn-3.5%Ag, Sn-3.5%Ag-0.7%Cu and Sn-3.5%Ag-3%In-0.5%Bi during a given thermal cycling. Strain values obtained by the result of mechanical fatigue tests for solder alloys, were used to predict the solder joint fatigue life using the Coffin-Manson equation. The numerical results showed that Sn-3.5%Ag with the 50-degree ball shape geometry had the longest thermal fatigue life in low cycle fatigue. A practical correlation for the prediction of the thermal fatigue life was also suggested by using the dimensionless variable γ. Additionally Sn-3.5Ag-0.75Cu and Sn-2.0Ag-0.5Cu-2.0Bi were applied to 6$\times$8$\mu$BGA obtained from the 63Sn-37Pb Solder. This 6$\times$8$\mu$BGA were tested at different aging conditions at 130$\^{C}$, 150$\^{C}$, 170$\^{C}$ for 300, 600 and 900 hours. Thickness of the intermetallic compound layer was measured thor each condition and the activation energy thor their growth was computed. The fracture surfaces were analyzed using SEM (Scanning Electron Microscope) with EDS ( Energy Dispersive Spectroscopy).

A study on soldering Characteristics between Sn-Ag-X system and BGA joints (BGA 접합부에서 Sn-Ag-X 계 solder의 soldering성 특성에 관한 연구)

  • 김봉균;박종현;오은주;이규하;서창제
    • Proceedings of the KWS Conference
    • /
    • 2004.05a
    • /
    • pp.81-83
    • /
    • 2004
  • 최근 대두되고 있는 환경오염문제로 인해 전자산업에서는 전 세계적으로 Pb 솔더에 관한 규제가 진행중에 있다. 이에 Pb free 솔더에 관한 연구가 활발히 진행 중에 있으며 그 중 Sn-Ag계 solder는 유력한 대체 solder로 대두되고 있다. (중략)

  • PDF

Optimization of Soldering Process of Sn-3.0Ag-0.5Cu and Sn-1.0Ag-0.7Cu-1.6Bi-0.2In Alloys for Solar Combiner Junction Box Module (태양광 접속함 정션박스 모듈 적용을 위한 Sn-3.0Ag-0.5Cu 및 Sn-1.0Ag-0.7Cu-1.6Bi-0.2In 솔더링의 공정최적화)

  • Lee, Byung-Suk;Oh, Chul-Min;Kwak, Hyun;Kim, Tae-Woo;Yun, Heui-Bog;Yoon, Jeong-Won
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.25 no.3
    • /
    • pp.13-19
    • /
    • 2018
  • The soldering property of Pb-containing solder(Sn-Pb) and Pb-free solders(Sn-3.0Ag-0.5Cu and Sn-1.0Ag-0.7Cu-1.6Bi-0.2In) for solar combiner box module was compared. The solar combiner box module was composed of voltage and current detecting modules, diode modules, and other modules. In this study, solder paste printability, printing shape inspection, solder joint property, X-ray inspection, and shear force measurements were conducted. For optimization of Pb-free soldering process, step 1 and 2 were divided. In the step 1 process, the printability of Pb-containing and Pb-free solder alloys were estimated by using printing inspector. Then, the relationship between void percentages and shear force has been estimated. Overall, the property of Pb-containing solder was better than two Pb-free solders. In the step 2 process, the property of reflow soldering for the Pb-free solders was evaluated with different reflow peak temperatures. As the peak temperature of the reflow process gradually increased, the void percentage decreased by 2 to 4%, but the shear force did not significantly depend on the reflow peak temperature by a deviation of about 0.5 kgf. Among different surface finishes on PCB, ENIG surface finish was better than OSP and Pb-free solder surface finishes in terms of shear force. In the thermal shock reliability test of the solar combiner box module with a Pb-free solder and OSP surface finish, the change rate of electrical property of the module was almost unchanged within a 0.3% range and the module had a relatively good electrical property after 500 thermal shock cycles.

Pb-FREE SOLDER PLATING

  • Yada, Y.;Tokio, K.
    • Journal of the Korean institute of surface engineering
    • /
    • v.32 no.3
    • /
    • pp.211-213
    • /
    • 1999
  • In the future, restrictions are likely to be imposed on the use of lead in the electronics industry. In dealing with such a move, we have been developing Pb-free Sn-Ag plating process to replace presently available Sn-Pb process. In this paper, the result of a basic comparison test between Sn-Pb plating and Sn-Ag plating is reported.

  • PDF

Development of the Copper Core Balls Electroplated with the Solder of Sn-Ag-Cu

  • Imae, Shinya;Sugitani, Yuji;Nishida, Motonori;kajita, Osamu;Takeuchi, Takao
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1207-1208
    • /
    • 2006
  • We developed the copper core ball electroplated with Sn-Ag-Cu of the eutectic composition which used mostly as Pb free solder ball with high reliability. In order to search for the practicality of this developed copper core ball, the evaluation was executed by measuring the initial joint strength of the sample mounted on the substrate and reflowed and by measuring the joint strength of the sample after the high temperature leaving test and the constant temperature and the humidity leaving test. This evaluation was compered with those of the usual other copper core balls electroplated with (Sn,Sn-Ag,Sn-Cu,Sn-Bi) and the Sn-Ag-Cu solder ball.

  • PDF

Behavior of Vibration Fracture for Sn-Ag-Cu-X Solders by Soldering (Sn-Ag-Cu-X 무연솔더로 솔더링 된 접합부의 진동파괴 거동)

  • Jin, Sang-Hun;Kang, Nam-Hyun;Cho, Kyung-Mox;Lee, Chang-Woo;Hong, Won-Sik
    • Journal of Welding and Joining
    • /
    • v.30 no.2
    • /
    • pp.65-69
    • /
    • 2012
  • Environmental and health concerns over the lead have led to investigation of the alternative Pb-free solders to replace commonly used Pb-Sn solders in microelectronic packaging application. The leading candidates for lead-free solder alloys are presently the near eutectic Sn-Ag-Cu alloys. Therefore, extensive studies on reliability related with the composition have been reported. However, the insufficient drop property of the near eutectic Sn-Ag-Cu alloys has demanded solder compositions of low Ag content. In addition, the solder interconnections in automobile applications like a smart box require significantly improved vibration resistance. Therefore, this study investigated the effect of alloying elements (Ag, Bi, In) on the vibration fatigue strength. The vibration fatigue was conducted in 10~1000Hz frequency and 20Grms. The interface of the as-soldered cross section close to the Cu pad indicated the intermetallic compound ($Cu_6Sn_5$) regardless of solder composition. The type and thickness of IMC was not significantly changed after the vibration test. It indicates that no thermal activities occurred significantly during vibration. Furthermore, as a function of alloying composition, the vibration crack path was investigated with a focus on the IMCs. Vibration crack was initiated from the fillet surface of the heel for QFP parts and from the plating layer of chip parts. Regardless of the solder composition, the crack during a vibration test was propagated as same as that during a thermal fatigue test.

A Comparative Study of the Fatigue Behavior of SnAgCu and SnPb Solder Joints (무연솔더(SnAgCu)와 유연솔더(SnPb)의 피로 수명 비교 연구)

  • Kim, Il-Ho;Park, Tae-Sang;Lee, Soon-Bok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.12
    • /
    • pp.1856-1863
    • /
    • 2004
  • In the last 50 years, lead-contained solder materials have been the most popular interconnect materials used in the electronics industry. Recently, lead-free solders are about to replace lead-contained solders for preventing environmental pollutions. However, the reliability of lead-free solders is not yet satisfactory. Several researchers reported that lead-contained solders have a good fatigue property. The others published that the lead-free solders have a longer thermal fatigue life. In this paper, the reason for the contradictory results published on the estimation of fatigue life of lead-free solder is investigated. In the present study, fatigue behavior of 63Sn37Pb, and two types of lead-free solder joints were compared using pseudo-power cycling testing method, which provides more realistic load cycling than chamber cycling method does. Pseudo-power cycling test was performed in various temperature ranges to evaluating the shear strain effect. A nonlinear finite element model was used to simulate the thermally induced visco-plastic deformation of solder ball joint in BGA packages. It was found that lead-free solder joints have a good fatigue property in the small temperature range condition. That condition induce small strain amplitude. However in the large temperature range condition, lead-contained solder joints have a longer fatigue life.

A Study on The Solderability of Micro-BGA of Sn-3.5Ag-0.7Cu (Sn-3.5Ag-0.7Cu Micro-BCA의 Soldering성 연구)

  • ;;;;Kozo Jujimoto
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.7 no.3
    • /
    • pp.55-61
    • /
    • 2000
  • Sn-37Pb and Sn-3.5Ag-0.7Cu solder balls of 0.3 mm diameter were reflow soldered with the variation of soldering peak temperature and conveyer speed of reflow machine. The peak temperatures far soldering were changed in the range of 220~$240^{\circ}C$ for Sn-37Pb and 230~$260^{\circ}C$ for Sn-3.5Ag-0.7Cu. As the results of experiments, optimum soldering condition for Sn-37Pb was $230^{\circ}C$ of soldering temp., 0.7~0.8 m/min of conveyer speed. The optimum condition for the Sn-3.5Ag-0.7Cu was $250^{\circ}C$ and 0.6 m/min. The maximum shear strength for the soldered joints of Sn-37Pb was 555 gf and of Sn-3.5Ag-0.7Cu was 617 gf. Thickness of the intermetallic compound Cu6Sn5 on the soldered interface was 1.13~1.45 $\mu\textrm{m}$ for Sn-37Pb and 2.5~4.3 $\mu\textrm{m}$ for Sn-3.5Ag-0.7Cu.

  • PDF