• Title/Summary/Keyword: Sn-37%Pb solder

Search Result 82, Processing Time 0.024 seconds

Thermo-Mechanical Reliability of Lead-Free Surface Mount Assemblies for Auto-Mobile Application (무연 솔더가 적용된 자동차 전장부품 접합부의 열적.기계적 신뢰성 평가)

  • Ha, Sang-Su;Kim, Jong-Woong;Chae, Jong-Hyuck;Moon, Won-Chul;Hong, Tae-Hwan;Yoo, Choong-Sik;Moon, Jeong-Hoon;Jung, Seung-Boo
    • Journal of Welding and Joining
    • /
    • v.24 no.6
    • /
    • pp.21-27
    • /
    • 2006
  • This study was focused on the evaluation of the thermo-mechanical board-level reliability of Pb-bearing and Pb-free surface mount assemblies. The composition of Pb-bearing solder was a typical Sn-37Pb and that of Pb-free solder used in this study was a representative Sn-3.0Ag-0.5Cu in mass %. Thermal shock test was chosen for the reliability evaluation of the solder joints. Typical $Cu_6Sn_5$ intermetallic compound (IMC) layer was formed between both solders and Cu lead frame at the as-reflowed state, while a layer of $Cu_3Sn$ was additionally formed between the $Cu_6Sn_5$ and Cu lead frame during the thermal shock testing. Thickness of the IMC layers increased with increasing thermal shock cycles, and this is very similar result with that of isothermal aging study of solder joints. Shear test of the multi layer ceramic capacitor(MLCC) joints was also performed to investigate the degradation of mechanical bonding strength of solder joints during the thermal shock testing. Failure mode of the joints after shear testing revealed that the degradation was mainly due to the excessive growth of the IMC layers during the thermal shock testing.

Characteristics of Joint Between Ag-Pd Thick Film Conductor and Solder Bump and Interfacial Reaction (Ag-Pd 후막도체와 솔더범프 사이의 접합특성 및 계면반응)

  • 김경섭;한완옥;이종남;양택진
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.11 no.1
    • /
    • pp.1-6
    • /
    • 2004
  • The requirements for harsh environment electronic controllers in automotive applications have been steadily becoming more and more stringent. Electronic substrate technologists have been responding to this challenge effectively in an effort to meet the performance, reliability and cost requirements. An effect of the plasma cleaning at the ECM(Engine Control Module) alumina substrate and the intermetallic compound layer between Sn-37wt%Pb solder and pad joints after reflow soldering has been studied. Organic residual carbon layer was removed by the substrate plasma cleaning. So the interfacial adhesive strength was enhanced. As a result of AFM measurement, conductor pad roughness were increased from 304 nm to 330 nm. $Cu_6/Sn_5$ formed during initial reflow process at the interface between TiWN/Cu pad and solder grew by the succeeding reflow process, so the grains became coarse. A cellular-shaped $Ag_3Sn$ was observed at the interface between Ag-Pd conductor pad and solder. The diameters of the $Ag_3Sn$ grains ranged from about 0.1∼0.6 $\mu\textrm{m}$. And a needle-shaped was also observed at the inside of the solder.

  • PDF

Evaluation of Pull Strengths and Fracture Modes of Solder Joino by Modified Ball Pull Testing with Protrusion Jaw (Protrusion Jaw가 적용된 볼 당김시험을 이용한 솔더 접합부의 강도와 파괴 메커니즘 분석에 관한 연구)

  • Kim Hyoung-Il;Han Sung-Won;Kim Jong-Min;Choi Myung-Ki;Shin Young-Eul
    • Journal of Welding and Joining
    • /
    • v.23 no.4
    • /
    • pp.34-40
    • /
    • 2005
  • There have been numerous approaches to examine the bonding strengths of solder joints. However, despite the technical and practical limitations, the precedent test methods such as the ball shear and ball pull tests are being used in industrial applications. In this study, the optimum jaw pressure with the modified protrusion jaw was introduced in order to obtain higher successful rate f3r ball pull testing. Furthermore, the pull strengths and fracture modes of Sn-8Zn-3Bi, Sn-4Ag-0.7Cu, and Sn-37Pb eutectic solder after isothermal aging tests ($100^{\circ}C,\;150^{\circ}C$), were evaluated with the protrusion jaw. The pull strength-displacement hysteresis curves and fracture surfaces were carefully investigated to evaluate the correlation between the pull strengths and the fracture modes of each solder. In conclusion, it is verified that Au-Zn IMCs (Intermetallic Compounds) have a detrimental effect on the pull strengths and changed fracture modes of Sn-8Zn-3Bi solder. Meanwhile, the microstructure transformation influences the degradation of pull strengths of Sn-4Ag-0.7Cu and Sn-37Pb solders.

Fluxless Plasma Soldering of Pb-free Solders on Si-wafer -Effect of Plasma Cleaning - (Si-wafer의 플럭스 리스 플라즈마 무연 솔더링 -플라즈마 클리닝의 영향-)

  • 문준권;김정모;정재필
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.11 no.1
    • /
    • pp.77-85
    • /
    • 2004
  • To evaluate the effect of plasma cleaning on the soldering reliability the plasma cleaning using Ar-10vol%$H_2$ gas was applied on a UBM(Under Bump Metallization). The UBM consisted of Au/ Cu/ Ni/ Al layers which were deposited on a Si-wafer with 20 nm/ 4 $\mu\textrm{m}$/ 4 $\mu\textrm{m}$/ 0.4 $\mu\textrm{m}$ thickness respectively. Sn-3.5%Ag, Sn-3.5%Ag-0.7%Cu and Sn-37%Pb solder balls sized of 500 $\mu\textrm{m}$ in diameter were used. Solder balls on the UBM were plasma reflowed under Ar-10%$H_2$ plasma (with or without plasma cleaning). They were compared with air reflowed solder balls with flux. The spreading ratios of plasma reflowed solder with plasma cleaning was 20-40% higher than that of plasma reflowed solder without plasma cleaning. The shear strength of plasma reflowed solder with plasma cleaning was about 58-65MPa. It showed 60-80% higher than that of plasma reflowed solder without plasma cleaning and 15-35% higher than that of air reflowed solder. Thus it was believed that plasma cleaning for the UBM using Ar-10vol%$H_2$ gas was considerably effective for the improvement of the strength of solder ball.

  • PDF

A Study on Fluxless Soldering using Solder Foil (솔더 포일을 이용한 무플럭스 솔더링에 관한 연구)

  • 신영의;김경섭
    • Journal of Welding and Joining
    • /
    • v.16 no.5
    • /
    • pp.100-107
    • /
    • 1998
  • This paper describes fluxless soldering of reflow soldering process using solder foil instead of solder pastes. There is an increasing demand for the reliable solder connection in the recent high density microelectronic components technologies. And also, it is problem fracture of an Ozone layer due to freon as which is used to removal of remained flux on the substrate. This paper discussed joining phenomena, boudability and joining processes of microelectronics devices, such as between outer lead of VLSI package and copper pad on a substrate without flux. The shear strength of joints is 8 to 13 N using Sn/Pb (63/37 wt.%) solder foil with optimum joining conditions, meanwhile, in case of using Sn/In (52/48 wt.%) solder foil, it is possible to bond with low heating temperature of 550 K, and accomplish to high bonding strength of 25N in condition heating temperature of 650K. Finally, this paper experimentally shows fluxless soldering using solder foil, and accomplishes key technology of microsoldering processes.

  • PDF

A Study on melting and bridge phenomena of solder paste (Solder paste의 용융 및 bridge현상 관찰연구)

  • 안병용;정재필
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.442-446
    • /
    • 1999
  • Melting behavior and bridge phenomenon of solder paste, which is essential for surface mount technology in packaging, were investigated. solder paste of Sn-37%Pb was printed on Sn-coated Cu-pattern of PCB, and heated over melting point. Melting behavior of the paste was observed using CCD-camera. In order to modelize the melting and agglomeration phenomena of the paste, two solder balls of 0.76mm diameter were used. As experimental results, the paste start to melt from the margin of the printed shape. The hight of the melted paste decreased from 270 $\mu$m to 200 $\mu$m firstly, and finally recovered to 250 $\mu$m. During the melting procedure, pores were evolved from the molten paste. Bridge Phenomenon of the molten Paste depends upon the pitch of the pattern.

  • PDF

Reliability of Joint Between Solder Bump and Ag-Pd Thick Film Conductor and Interfacial Reaction (솔더범프와 Ag-Pd 후막도체의 접합 신뢰성 및 계면반응)

  • Kim Gyeong Seop;Lee Jong Nam;Yang Taek Jin
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2003.11a
    • /
    • pp.151-155
    • /
    • 2003
  • The requirements for harsh environment electronic controllers in automotive applications have been steadily becoming more and more stringent. Electronic substrate technologists have been responding to this challenge effectively in an effort to meet the performance, reliability and cost requirements. An effect of the plasma cleaning at the alumina substrate and the IMC layer between $Sn-37wt\%Pb$ solder and Ag-Pd thick film conductor after reflow soldering has been studied. Organic residual carbon layer was removed by the substrate plasma cleaning. So the interfacial adhesive strength was enhanced. As a result of AFM measurement, Ag-Pd conductor pad roughness were increased from 304nm to 330nm. $Cu_6Sn_5$ formed during initial ref]ow process at the interface between TiWN/Cu UBM and solder grew by the succeeding reflow process so the grains had a large diameter and dense interval. A cellular-shaped $Ag_3Sn$ was observed at the interface between Ag-Pd conductor pad and solder. The diameters of the $Ag_3Sn$ grains ranged from about $0.1\~0.6{\mu}m$. And a needle-shaped $Ag_3Sn$ was also observed at the inside of the solder.

  • PDF

Metallurgical Reaction Properties between In-15Pb-5Ag Solder and Zu-Ni Surface Finish (In-l5Pb-5Ag 솔더와 Au/Ni 층과의 반응 특성)

  • 이종현;엄용성;최광성;최병석;윤호경;박흥우;문종태
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2002.05a
    • /
    • pp.183-188
    • /
    • 2002
  • With the contact pad consisted of $0.5{\mu}{\textrm}{m}$ $Au/5{\mu}{\textrm}{m}$ Ni/Cu layers on a conventional ball grid array(BGA) substrate, metallurgical reaction properties between the pad and In-15(wt.%)Pb-5Ag solder alloy were studied after reflow and solid aging. In as-reflow condition, thin AuIn$_2$or Ni$_{28}$In$_{72}$ intermetallic layer was formed at the solder/pad interface according to reflow time. Dissolution of the Au layer into the molten solder was remarkably limited in comparison with eutectic Sn-37Pb alloy. After solid aging of 300 hrs, thickness of In-Ni layer increased to about $2{\mu}{\textrm}{m}$ in the both as-reflow case. It was observed that In atoms diffuse through the AuIn$_2$phase to react with underlaying Ni layer. The metallurgical reaction properties between In-l5Pb-7Ag alloy and Au/Ni surface finish were analysed to result in suppression of Au-embrittlement in the solder joints.

  • PDF

Flip Chip Assembly on PCB Substrates with Coined Solder Bumps (코인된 솔더 범프를 형성시킨 PCB 기판을 이용한 플립 칩 접속)

  • 나재웅;백경욱
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2002.11a
    • /
    • pp.21-26
    • /
    • 2002
  • Solder flip chip bumping and subsequent coining processes on PCB were investigated to solve the warpage problem of organic substrates for high pin count flip chip assembly by providing good co-planarity. Coining of solder bumps on PCB has been successfully demonstrated using a modified tension/compression tester with height, coining rate and coining temperature variables. It was observed that applied loads as a function of coined height showed three stages as coining deformation : (1) elastic deformation at early stage, (2) linear increase of applied load, and (3) rapid increase of applied load. In order to reduce applied loads for coining solder bumps on PCB, effects of coining process parameters were investigated. Coining loads for solder bump deformation strongly depended on coining rates and coining temperatures. As coining rates decreased and process temperature increased, coining loads decreased. Among the effect of two factors on coining loads, it was found that process temperature had more significant effect to reduce applied coining loads during the coining process. Lower coining loads were needed to prevent substrate damages such as micro-via failure and build-up dielectric layer thickness change during applying loads. For flip chip assembly, 97Pb/Sn flip chip bumped devices were successfully assembled on organic substrates with 37Pb/Sn coined flip chip bumps.

  • PDF

Evaluation and Test Method Characterization for Mechanical and Electrical Properties in BGA Package (BGA 패키지의 기계적${\cdot}$전기적 특성 평가 및 평가법)

  • Koo Ja-Myeong;Kim Jong-Woong;Kim Dae-Gon;Yoon Jeong-Won;Lee Chang-Yong;Jung Seung-Boo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.12 no.4 s.37
    • /
    • pp.289-299
    • /
    • 2005
  • The ball shear force was investigated in terms of test parameters, i.e. displacement rate and probe height, with an experimental and non-linear finite element analysis for evaluation of the solder joint integrity in area array packages. The increase in the displacement rate and the decrease in the probe height led to the increase in the shear force. Excessive probe height could cause some detrimental effects on the test results such as unexpected high standard deviation and probe sliding from the solder ball surface. The low shear height conditions were favorable for assessing the mechanical integrity of the solder joints. The mechanical and electrical properties of the Sn-37Pb/Cu and Sn-3.5Ag/Cu BGA solder joints were also investigated with the number of reflows. The total thickness of the intermetallic compound (IMC) layers, consisting of Cu6Sn5 and Cu3Sn, was increased as a function of cubic root of reflow time. The shear force was increased up to 3 or 4 reflows, and then was decreased with the number of reflows. The fracture occurred along the bulk solder, in irrespective of the number of reflows. The electrical resistivity was increased with increasing the number of reflows.

  • PDF