• Title/Summary/Keyword: Sn-3.5Ag-0.5Cu

Search Result 215, Processing Time 0.031 seconds

Thermal Shock Cycles Optimization of Sn-3.0 Ag-0.5 Cu/OSP Solder Joint with Bonding Strength Variation for Electronic Components (Sn-3.0 Ag-0.5 Cu/OSP 무연솔더 접합계면의 접합강도 변화에 따른 전자부품 열충격 싸이클 최적화)

  • Hong, Won-Sik;Kim, Whee-Sung;Song, Byeong-Suk;Kim, Kwang-Bae
    • Korean Journal of Materials Research
    • /
    • v.17 no.3
    • /
    • pp.152-159
    • /
    • 2007
  • When the electronics are tested with thermal shock for Pb-free solder joint reliability, there are temperature conditions with use environment but number of cycles for test don't clearly exist. To obtain the long term reliability data, electronic companies have spent the cost and times. Therefore this studies show the test method and number of thermal shock cycles for evaluating the solder joint reliability of electronic components and also research bonding strength variation with formation and growth of intermetallic compounds (IMC). SMD (surface mount device) 3216 chip resistor and 44 pin QFP (quad flat package) was utilized for experiments and each components were soldered with Sn-40Pb and Sn-3.0 Ag-0.5 Cu solder on the FR-4 PCB(printed circuit board) using by reflow soldering process. To reliability evaluation, thermal shock test was conducted between $-40^{\circ}C\;and\;+125^{\circ}C$ for 2,000 cycles, 10 minute dwell time, respectively. Also we analyzed the IMCs of solder joint using by SEM and EDX. To compare with bonding strength, resistor and QFP were tested shear strength and $45^{\circ}$ lead pull strength, respectively. From these results, optimized number of cycles was proposed with variation of bonding strength under thermal shock.

Effects of Temperature and Mechanical Deformation on the Microhardness of Lead free and Composite Solders (무연 복합 솔더의 미소경도에 미치는 기계적 변형과 온도의 영향)

  • Lee Joo Won;Kang Sung K.;Lee Hyuck Mo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.12 no.2 s.35
    • /
    • pp.121-128
    • /
    • 2005
  • Solder joints in microelectronic devices are frequently operated at an elevated temperature in service. They also experience plastic deformation caused by temperature excursion and difference in thermal expansion coefficients. Deformed solders can go through a recovery and recrystallization process at an elevated temperature, which would alter their microstructure and mechanical properties. In this study, to predict the changes in mechanical properties of Pb-free solder joints at high temperatures, the high temperature microhardness of several Pb-free and composite solders was measured as a function of temperature, deformation, and annealing condition. Solder alleys investigated include pure Sn, Sn-0.7Cu, Sn-3.5Ag, Sn-3.8Ag-0.7Cu, Sn-2.8Ag-7.0Cu (composite), and Sn-2.7Ag-4.9Cu-2.9Ni (composite). Numbers are all in wt.$\%$ unless specified otherwise. Solder pellets were cast at two cooling rates (0.4 and $7^{\circ}C$/s). The pellets were compressively deformed by $30\%$ and $50\%$ and annealed at $150^{\circ}C$ for 2 days. The microhardness was measured as a function of indentation temperature from 25 to $130^{\circ}C$. Their microstructure was also evaluated to correlate with the changes in microhardness.

  • PDF

Conductive adhesive with transient liquid-phase sintering technology for high-power device applications

  • Eom, Yong-Sung;Jang, Keon-Soo;Son, Ji-Hye;Bae, Hyun-Cheol;Choi, Kwang-Seong
    • ETRI Journal
    • /
    • v.41 no.6
    • /
    • pp.820-828
    • /
    • 2019
  • A highly reliable conductive adhesive obtained by transient liquid-phase sintering (TLPS) technologies is studied for use in high-power device packaging. TLPS involves the low-temperature reaction of a low-melting metal or alloy with a high-melting metal or alloy to form a reacted metal matrix. For a TLPS material (consisting of Ag-coated Cu, a Sn96.5-Ag3.0-Cu0.5 solder, and a volatile fluxing resin) used herein, the melting temperature of the metal matrix exceeds the bonding temperature. After bonding of the TLPS material, a unique melting peak of TLPS is observed at 356 ℃, consistent with the transient behavior of Ag3Sn + Cu6Sn5 → liquid + Cu3Sn reported by the National Institute of Standards and Technology. The TLPS material shows superior thermal conductivity as compared with other commercially available Ag pastes under the same specimen preparation conditions. In conclusion, the TLPS material can be a promising candidate for a highly reliable conductive adhesive in power device packaging because remelting of the SAC305 solder, which is widely used in conventional power modules, is not observed.

Effect of Different Aging Times on Sn-Ag-Cu Solder Alloy

  • Ervina Efzan, M.N.;Siti Norfarhani, I.
    • Transactions on Electrical and Electronic Materials
    • /
    • v.16 no.3
    • /
    • pp.112-116
    • /
    • 2015
  • This work studied the thickness and contact angle of solder joints between SAC 305 lead-free solder alloy and a Copper (Cu) substrate. Intermetallic compound (IMC) thickness and contact angle of 3Sn-Ag-0.5Cu (SAC 305) leadfree solder were measured using varying aging times, at a fixed temperature at 30℃. The thickness of IMC and contact angle depend on the aging time. IMC thickness increases as the aging increases. The contact angle gradually decreased from 39.49° to 27.59° as aging time increased from zero to 24 hours for big solder sample. Meanwhile, for small solder sample, the contact angle increased from 32.00° to 40.53° from zero to 24 hours. The IMC thickness sharply increased from 0.007 mm to 0.011 mm from zero to 24 hours aging time for big solder. In spite of that, for small solder the IMC thickness gradually increased from 0.009 mm to 0.017 mm. XRD analysis was used to confirm the intermetallic formation inside the sample. Cu6Sn5, Cu3Sn, Ni3Sn and Ni3Sn2 IMC layers were formed between the solder and the copper substrate. As the aging time increased, the strength of the solder joint mproved due to reduced contact angle.

Improved drop impact reliability of Sn-Ag-Cu solder joint using Cu-Zn solder wetting layer (Cu-Zn 합금 젖음층을 이용한 Sn-Ag-Cu 솔더 접합부의 낙하 충격 신뢰성 향상 연구)

  • Kim, Yeong-Min;Kim, Yeong-Ho
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.05a
    • /
    • pp.35.2-35.2
    • /
    • 2009
  • 최근 본 연구실에서 무연 솔더를 위한 새로운 Cu-Zn 합금 젖음층을 개발하였다. 전해도금을 통하여 Cu-Zn 합금층을 형성한 뒤 그 위에 Sn-4.0wt% Ag-0.5wt% Cu (SAC 405) 솔더를 리플로 솔더링을 통해 솔더접합부를 형성하였으며 계면에서 생성된 금속간 화합물의 형성 및 성장 거동을 연구하였다. SAC/Cu 시스템의 경우, $150^{\circ}C$에서 시효 처리를 실시하는 동안 솔더와 도금된 Cu 계면에서 $Cu_6Sn_5$ 상과 미세한 공공이 형성된 $Cu_3Sn$ 상이 발견되었다. 반면에 SAC/Cu-Zn 시스템에서는 계면에서 $Cu_6Sn_5$ 상만이 형성되었다. 또한 큰 판상형의 $Ag_3Sn$ 상이 SAC/Cu 시스템에 비해 현저하게 억제되었다. SAC/Cu-Zn 계면에서의 금속간 화합물의 성장 속도가 SAC/Cu 계면에서 형성된 금속간 화합물의 성장 속도보다 느리게 나타났다. Cu-Zn 젖음층의 Zn가 솔더와 Cu-Zn 층 사이에서 Cu와 Sn 원자의 상호 확산을 방해하기 때문이다. 본 연구에서는 Cu와 Cu-Zn 층을 이용한 솔더 접합부의 낙하 충격 신뢰성을 연구하였다. 낙하 충격 시험 시편은 두 개의 인쇄 회로 기판을 SAC 405 솔더볼을 이용하여 리플로를 통해 상호연결 하여 제조되었다. 이 때, 각각의 인쇄 회로 기판의 패드에는 Cu 층과 Cu-Zn층을 전해도금을 통하여 각각 $10{\mu}m$두께의 젖음층을 형성하였다. 낙하 시험 시편을 제조한 뒤, 시효 처리에 대한 낙하 저항 신뢰성의 특성을 연구하기 위해 250, 500 시간동안 시효처리를 한 후 각 조건에서 계면에 형성된 금속간 화합물의 성장 거동을 관찰하였으며, 낙하 충격 시험을 실시하였다. 낙하 시험은 daisy chain으로 연결된 시편의 저항이 100 Ohm 이상 측정되었을 때 중단되도록 하였다. Cu-Zn/SAC/Cu-Zn 시편의 경우 초기 리플로를 하였을 때 불량이 발생하는 평균 낙하 수는 350이며, Cu/SAC/Cu 시편의 평균 낙하수는 200 미만으로 나타났다. Cu/SAC/Cu 시편의 경우, 시효처리 시간이 증가함에 따라 평균 낙하수는 큰 폭으로 감소하였지만, Cu-Zn/SAC/Cu-Zn 시편은 불량이 발생하는 평균 낙하수의 감소폭이 보다 완만하게 나타났다. Cu 층에 Zn를 첨가함으로써 솔더와 젖음층 사이에서 형성된 금속간 화합물의 성장 및 미세 공공의 형성이 억제되었고, 솔더 접합부의 과냉을 감소시킴으로써 큰 판상형의 $Ag_3Sn$ 상의 형성을 억제함으로써 Cu-Zn/SAC/Cu-Zn 솔더 접합부에서 Cu/SAC/Cu 솔더 접합부보다 낙하 충격에 대한 저항성 및 신뢰성이 향상되었다. 이는 무연 솔더에 Zn를 첨가하여 낙하 충격 신뢰성을 향상시킨 것과 동일한 효과를 나타냈음을 확인하였다. 본 연구는 한국 과학 기술 재단의 전자패키지 재료 연구 센터(CEPM)와 지식 경제부의 부품 소재 기술 개발 사업의 지원을 받아 수행되었습니다.

  • PDF

The Effects of UBM and SnAgCu Solder on Drop Impact Reliability of Wafer Level Package

  • Kim, Hyun-Ho;Kim, Do-Hyung;Kim, Jong-Bin;Kim, Hee-Jin;Ahn, Jae-Ung;Kang, In-Soo;Lee, Jun-Kyu;Ahn, Hyo-Sok;Kim, Sung-Dong
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.17 no.3
    • /
    • pp.65-69
    • /
    • 2010
  • In this study, we investigated the effects of UBM(Under Bump Metallization) and solder composition on the drop impact reliability of wafer level packaging. Fan-in type WLP chips were prepared with different solder ball composition (Sn3.0Ag0.5Cu, and Sn1.0Ag0.5Cu) and UBM (Cu 10 ${\mu}m$, Cu 5 ${\mu}m$\Ni 3 ${\mu}m$). Drop test was performed up to 200 cycles with 1500G acceleration according to JESD22-B111. Cu\Ni UBM showed better drop performance than Cu UBM, which could be attributed to suppression of IMC formation by Ni diffusion barrier. SAC105 was slightly better than SAC305 in terms of MTTF. Drop failure occurred at board side for Cu UBM and chip side for Cu\Ni UBM, independent of solder composition. Corner and center chip position on the board were found to have the shortest drop lifetime due to stress waves generated from impact.

Flux residue effect on the electrochemical migration of Sn-3.0Ag-0.5Cu (Sn-3.0Ag-0.5Cu 솔더링에서 플럭스 잔사가 전기화학적 마이그레이션에 미치는 영향)

  • Bang, Jung-Hwan;Lee, Chang-Woo
    • Journal of Welding and Joining
    • /
    • v.29 no.5
    • /
    • pp.95-98
    • /
    • 2011
  • Recently, there is a growing tendency that fine-pitch electronic devices are increased due to higher density and very large scale integration. Finer pitch printed circuit board(PCB) is to be decrease insulation resistance between circuit patterns and electrical components, which will induce to electrical short in electronic circuit by electrochemical migration when it exposes to long term in high temperature and high humidity. In this research, the effect of soldering flux acting as an electrical carrier between conductors on electrochemical migration was investigated. The PCB pad was coated with OSP finish. Sn3.0Ag0.5Cu solder paste was printed on the PCB circuit and then the coupon was treated by reflow process. Thereby, specimen for ion migration test was fabricated. Electrochemical migration test was conducted under the condition of DC 48 V, $85^{\circ}C$, and 85 % relative humidity. Their life time could be increased about 22% by means of removal of flux. The fundamentals and mechanism of electrochemical migration was discussed depending on the existence of flux residues after reflow process.

Creep Deformation Behaviors of Tin Pest Resistant Solder Alloys (Tin Pest 방지 솔더합금의 크리프 특성)

  • Kim S. B.;Yu Jin;Sohn Y. C.
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.12 no.1 s.34
    • /
    • pp.47-52
    • /
    • 2005
  • Worldwide movement for prohibition of Pb usage drives imminent implementation of Pb-free solders in microelectronic packaging industry. Reliability information of Pb-free solders has not been completely constructed yet. One of the potential reliability concerns of Pb-free solders is allotropic transformation of Sn known as tin pest. Volume increase during the formation of tin pest could deteriorate the reliability of solder joints. It was also reported that the addition of soluble elements (i.e. Pb, Bi, and Sb) into Sn can effectively suppress the tin pest. However, the mechanical properties of the tin pest resistant alloys have not been studied in detail. In this study, lap shear creep test was conducted with Sn and Sn-0.7Cu based solder alloys doped with minor amount of Bi or Sb. Shear strain rates of the alloy were generally higher than those of Sn-3.5Ag based alloys. Rupture strains and corresponding Monkman- Grant products were largest for Sn-0.5Bi alloy and smallest for Sn-0.7Cu-0.5Sb alloy. Rupture surface Sn-0.5Bi alloy showed highly elongated $\beta$-Sn globules necked to rupture by shear stresses, while elongation of $\beta$-Sn globules of Sn-0.7Cu-0.5Sb alloy was relatively smaller.

  • PDF

Non-conductive Film Effect on Ni-Sn Intermetallic Compounds Growth Kinetics of Cu/Ni/Sn-2.5Ag Microbump during Annealing and Current Stressing (열처리 및 전류인가 조건에서 Cu/Ni/Sn-2.5Ag 미세범프의 Ni-Sn 금속간화합물 성장 거동에 미치는 비전도성 필름의 영향 분석)

  • Kim, Gahui;Ryu, Hyodong;Kwon, Woobin;Son, Kirak;Park, Young-Bae
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.29 no.2
    • /
    • pp.81-89
    • /
    • 2022
  • The in-situ electromigration(EM) and annealing test were performed at 110, 130, and 150℃ with a current density of 1.3×105 A/cm2 conditions to investigate the effect of non-conductive film (NCF) on growth kinetics of intermetallic compound (IMC) in Cu/Ni/Sn-2.5Ag microbump. As a result, the activation energy of the Ni3Sn4 IMC growth in the annealing and EM conditions according to the NCF application was about 0.52 eV, and there was no significant difference. This is because the growth rate of Ni-Sn IMC is much slower than that of Cu-Sn IMC, and the growth behavior of Ni-Sn IMC increases linearly with the square root of time, so it has the same reaction mechanism dominated by diffusion. In addition, there is no difference in the activation energy of the Ni3Sn4 IMC growth because the EM resistance effect of the back stress according to the NCF application is not large.