• Title/Summary/Keyword: Sn plating

Search Result 138, Processing Time 0.023 seconds

Fabrication of Sn-Cu Bump using Electroless Plating Method (무전해 도금법을 이용한 Sn-Cu 범프 형성에 관한 연구)

  • Moon, Yun-Sung;Lee, Jae-Ho
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.15 no.2
    • /
    • pp.17-21
    • /
    • 2008
  • The electroless plating of copper and tin were investigated for the fabrication of Sn-Cu bump. Copper and tin were electroless plated in series on $20{\mu}m$ diameter copper via to form approximately $10{\mu}m$ height bump. In electroless copper plating, acid cleaning and stabilizer addition promoted the selectivity of bath on the copper via. In electroless tin plating, the coating thickness of tin was less uniform relative to that of electroless copper, however the size of Sn-Cu bump were uniform after reflow process.

  • PDF

A Reliability Test for Pb-Free Plating Solution and its Deposit (Pb-Free 도금용액 및 피막의 신뢰성평가)

  • Hur, Jin-Young;Koo, Suck bone;Lee, Hong-Kee
    • Clean Technology
    • /
    • v.11 no.3
    • /
    • pp.153-164
    • /
    • 2005
  • This study found a reliable evaluation for four kinds of pb-Free plating solutions and it's layers, through pure Sn, SnAg, SnBi and SnCu. These four kind of solutions are widely used to pb-Free plating. Hull-cell, Harring-blum, coverage, throwing power, current efficiency, stability, life-time, composition, hardness, roughness, abrasion, scratch, solderability, corrosion, contact angle, morphology, SIR(Surface insulation resistance) and Whisker test were experimented. Also, Using ICP, XRF, FE-SEM, EDS, temperature/humidity chamber, solderability tester, hardness tester, roughness tester, abrasion tester, salt spray tester, contact angle tester, SIR tester, and microscope. In this paper could be shown the systematic and various analysis for reliability about four kinds of pb-Free plating solutions, processes and it's deposit surface.

  • PDF

Plating Solution Composition Control of Tin-Cobalt Alloy Electroplating Process (Tin-Cobalt 합금 도금공정에서 도금물성 향상을 위한 최적 용액조성 디자인)

  • Lee, Seung-Bum;Hong, In-Kwon
    • Applied Chemistry for Engineering
    • /
    • v.17 no.2
    • /
    • pp.150-157
    • /
    • 2006
  • The alternate plating method was suggested by a tin-cobalt alloy plating process which has excellent mechanical characteristics and also favorable to environment. Tin-cobalt alloy plating has many advantages such as nontoxicity, variable color-tone, and no post-treatment process. In this study, the plating conditions such as temperature, pH, current density, plating time, and amount of additive (glycine) were determined in the tin-cobalt alloy plating process through Hull-cell test and surface analysis. As the result of Hull-cell analysis, brightness became superior as the amount of glycine increased. It was found that the optimum alloy ratio was 0.03 M of $SnCl_{2}{\cdot}2H_{2}O$ and 0.05 M of $CoSO_{4}{\cdot}7H_{2}O$ at $50^{\circ}C$, pH 8.5, and $0.5A/dm^2$. The optimum amount of additive was 15 g/L of glycine and 0.1 g/L of organic acid. Then, the solution including glycine was recommended as an optimum plating solution for a chromium plating process.

A Study on Working Condition of the Pb Free Plating Process Using the Plating Soluction of Sn/Cu (Sn/Cu 도금액을 이용한 무연 도금공정의 작업조건에 관한 연구)

  • Jeon, Taeg-Jong;Ko, Jun-Bin;Lee, Dong-Ju
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.18 no.2
    • /
    • pp.234-240
    • /
    • 2009
  • In this study, we found that it is important to have a specific management of standards which are the $12{\pm}3{\mu}m$ of plating thickness and $2{\pm}1%$ of tuning. To verify these standards, we checked the plating thickness and density of tuning through marginal valuation of each and checked size of a plating particle, adhesion of solder and condition of reflow after a section chief.

A Study of Optimization of Electrodeposited CuSnZn Alloys Electrolyte and Process

  • Hur, Jin-Young;Lee, Ho-Nyun;Lee, Hong-Kee
    • Journal of the Korean institute of surface engineering
    • /
    • v.43 no.2
    • /
    • pp.64-72
    • /
    • 2010
  • CuSnZn electroplating was investigated as alternative to Ni plating. Evaluation of electrolyte and plating process was performed to control physical characteristics of the film, and to collect practical data for application. Hull-cell test was conducted for basic comparison of two commercialized products and developed product. Based on hull-cell test results, long term test of three electrolytes was performed. Various analysis on long term tested electrolyte and samples have been done. Reliable and practical data was collected using FE-SEM (FEI, Sirion), EDX (ThermoNoran SIX-200E), ICP Spectrometer (GBC Scientifi c, Integra XL), FIB (FEI, Nova600) for anlysis. Physical analysis and reliability test of the long term tested film were also carried out. Through this investigation plating time, plating speed, electrolyte composition, electrolyte metal consumption, hardness and corrosion resistance has been compared. This set of data is used to predict and control the chemical composition of the film and modify the physical characteristics of the CuSnZn alloy.

Novel Environmentally Benign and Low-Cost Pd-free Electroless Plating Method Using Ag Nanosol as an Activator

  • Kim, Jun Hong;Oh, Joo Young;Song, Shin Ae;Kim, Kiyoung;Lim, Sung Nam
    • Journal of Electrochemical Science and Technology
    • /
    • v.8 no.3
    • /
    • pp.215-221
    • /
    • 2017
  • The electroless plating process largely consists of substrate cleaning, seed formation (activator formation), and electroless plating. The most widely used activator in the seed formation step is Pd, and Sn ions are used to facilitate the formation of this Pd seed layer. This is problematic because the Sn ions interfere with the reduction of Cu ions during electroless plating; thus, the Sn ions must be removed by a hydrochloric acid cleaning process. This method is also expensive due to the use of Pd. In this study, Cu electroless plating was performed by forming a seed layer using a silver nanosol instead of Pd and Sn. The effects of the Ag nanosol concentration in the pretreatment solution and the pretreatment time on the thickness and surface morphology of the Cu layer were investigated. The degrees of adhesion to the substrate were similar for the electroless-plated Cu layers formed by conventional Pd activation and those formed by the Ag nanosol.

The Change of Composition and the Throwing Power of Pb-Sn Alloy Electrodeposits in Pulse Plating (파형전류전해에 의한 Pb-Sn합금의 조성변화 및 균일전착력)

  • 예길촌;김용웅
    • Journal of the Korean institute of surface engineering
    • /
    • v.22 no.4
    • /
    • pp.197-206
    • /
    • 1989
  • The Composition and throwing power-of Pb-Sn alloy deposits are investigated in tems of the pulse parameters in pulse plating. Microhardness and intermal srress of alloy deposots are measured. The current efficiency of pulse plating is lower than that of D.C.plating while cathode overpotential and macro-throwing power noticebly increase with increasing peak current density. The Pb content of P.C. plated alloy deposits with increasing average current density, is relatively lower than of D.C. plated deposits at the same average current density. The internal stress of Pb-Sn alloy is not detected and the microhardness are 9.0kg/mm2 and 11kg/mm2 for D.C. plated P.C. plated deposits, respectively.

  • PDF

Effects of Cu Wire's Shape on the Plating Property of Sn-Pb Solder for Photovoltaic Ribbons

  • Cho, Tae-Sik;Chae, Mun-Seok;Cho, Chul-Sik
    • Transactions on Electrical and Electronic Materials
    • /
    • v.15 no.4
    • /
    • pp.217-220
    • /
    • 2014
  • We studied the plating properties of Sn-Pb solder according to the shape of the Cu wire's cross-section for photovoltaic ribbon. The thickness of the Sn-Pb layer largely decreased to 29% on a curved Cu surface, compared to a flat Cu surface. This phenomenon is caused by the geometrical decrease in the contact angle of the liquid Sn-Pb solder and an increase in the surface energy of the solid/vapor on the curved Cu surface. We suggest a new ribbon's design where the Cu wire's cross-section is a semi-ellipse. These semi-ellipse ribbons can decrease the use of Sn-Pb solder to 64% and increase the photovoltaic efficiency, by reducing the contact area between the ribbon and cell, to 84%. We also see an improvement of reflectivity in the curved surface.

Fabrication and Characteristics of Electroplated Sn-0.7Cu Micro-bumps for Flip-Chip Packaging (플립칩 패키징용 Sn-0.7Cu 전해도금 초미세 솔더 범프의 제조와 특성)

  • Roh, Myong-Hoon;Lee, Hea-Yeol;Kim, Wonjoong;Jung, Jae Pil
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.5
    • /
    • pp.411-418
    • /
    • 2011
  • The current study investigates the electroplating characteristics of Sn-Cu eutectic micro-bumps electroplated on a Si chip for flip chip application. Under bump metallization (UBM) layers consisting of Cr, Cu, Ni and Au sequentially from bottom to top with the aim of achieving Sn-Cu bumps $10\times10\times6$ ${\mu}m$ in size, with 20${\mu}m$ pitch. In order to determine optimal plating parameters, the polarization curve, current density and plating time were analyzed. Experimental results showed the equilibrium potential from the Sn-Cu polarization curve is -0.465 V, which is attained when Sn-Cu electro-deposition occurred. The thickness of the electroplated bumps increased with rising current density and plating time up to 20 mA/$cm^2$ and 30 min respectively. The near eutectic composition of the Sn-0.72wt%Cu bump was obtained by plating at 10 mA/$cm^2$ for 20 min, and the bump size at these conditions was $10\times10\times6$ ${\mu}m$. The shear strength of the eutectic Sn-Cu bump was 9.0 gf when the shearing tip height was 50% of the bump height.

Characteristics of Sn-Pb Electroplating and Bump Formation for Flip Chip Fabrication (전해도금에 의해 제조된 플립칩 솔더 범프의 특성)

  • Hwang, Hyeon;Hong, Soon-Min;Kang, Choon-Sik;Jung, Jae-Pil
    • Journal of Welding and Joining
    • /
    • v.19 no.5
    • /
    • pp.520-525
    • /
    • 2001
  • The Sn-Pb eutectic solder bump formation ($150\mu\textrm{m}$ diameter, $250\mu\textrm{m}$ pitch) by electroplating was studied for flip chip package fabrication. The effect of current density and plating time on Sn-Pb deposit was investigated. The morphology and composition of plated solder surface was examined by scanning electron microscopy. The plating thickness increased wish increasing time. The plating rate became constant at limiting current density. After the characteristics of Sn-Pb plating were investigated, Sn-Pb solder bumps were fabricated in optimal condition of $7A/dm^$. 4hr. Ball shear test after reflow was performed to measure adhesion strength between solder bump and UBM (Under Bump Metallurgy). The shear strength of Sn-Pb bump after reflow was higher than that of before reflow.

  • PDF