• Title/Summary/Keyword: Sn doping

Search Result 112, Processing Time 0.023 seconds

Deping characteristics of the Bi-Sr-Ca-Cu-O ceramics (Bi-Sr-Ca-Cu-O 세라믹의 도우핑 특성)

  • 박용필;김영천;황석영
    • Electrical & Electronic Materials
    • /
    • v.9 no.1
    • /
    • pp.1-8
    • /
    • 1996
  • We investigated the effects of doping elements on the Bi-Sr-Ca-Cu-O ceramics. The doping elements can be classified into four groups depending on their supeconducting characteristics in the Bi-Sr-Ca-Cu-O structure. The first group of doping elements(Co, Fe, Ni and Zn) substitute into the copper site and can reduce the critical temperatures of the 2223 and 2212 phases. The second group of doping elements(Y and La) substitute into the Ca site and cause the disappearance of the 2223 phase and increase the critical temperatures in the 2212 phase. The third group of doping elements(P and K) have a tendency to decompose the superconducting phase and reduce the optimal sintering temperature. The fourth group of doping elements(B, Si, Sn and Ba) almost unaffected the superconductivity of the 2223 and 2212 phase.

  • PDF

Recent Studies on Performance Enhancement of Polycrystal SnSe Thermoelectric Materials (다결정 SnSe 열전 재료의 성능 개선 연구 동향)

  • Jung, Myeong Jun;Choi, Byung Joon
    • Journal of Powder Materials
    • /
    • v.29 no.2
    • /
    • pp.152-158
    • /
    • 2022
  • Thermoelectric materials can reversely convert heat and electricity into each other; therefore, they can be very useful for energy harvesting from heat waste. Among many thermoelectrical materials, SnSe exhibits outstanding thermoelectric performance along the particular direction of a single crystal. However, single-crystal SnSe has poor mechanical properties and thus it is difficult to apply for mass production. Therefore, polycrystalline SnSe materials may be used to replace single-crystal SnSe by overcoming its inferior thermoelectric performance owing to surface oxidation. Considerable efforts are currently focused on enhancing the thermoelectric performance of polycrystalline SnSe. In this study, we briefly review various enhancement methods for SnSe thermoelectric materials, including doping, texturing, and nano-structuring. Finally, we discuss the future prospects of SnSe thermoelectric powder materials.

Doping Characteristics of Bi System Superconductor (Bi계 초전도체의 도우핑 특성)

  • Yang, Sung-Ho;Jung, Jin-In;Park, Yong-Pil
    • Proceedings of the KIEE Conference
    • /
    • 1999.11d
    • /
    • pp.915-917
    • /
    • 1999
  • We investigated the effects of doping elements on the Bi system superconductor. The doping elements can be classified into two groups depending on their supeconducting characteristics in the Bi-Sr-Ca-Cu-O structure. The first group of doping elements(P and K) have a tendency to decompose the superconducting phase and reduce the optimal sintering temperature. The second group of doping elements(B, Si, Sn and Ba) almost uneffected the superconductivity of the 2223 and 2212 phase.

  • PDF

Ta Doped SnO2 Transparent Conducting Films Prepared by PLD

  • Cho, Ho Je;Seo, Yong Jun;Kim, Geun Woo;Park, Keun Young;Heo, Si Nae;Koo, Bon Heun
    • Korean Journal of Materials Research
    • /
    • v.23 no.8
    • /
    • pp.435-440
    • /
    • 2013
  • Transparent and conducting thin films of Ta-doped $SnO_2$ were fabricated on a glass substrate by a pulse laser deposition(PLD) method. The structural, optical, and electrical properties of these films were investigated as a function of doping level, oxygen partial pressure, substrate temperature, and film thickness. XRD results revealed that all the deposited films were polycrystalline and the intensity of the (211) plane of $SnO_2$ decreased with an increase of Ta content. However, the orientation of the films changed from (211) to (110) with an increase in oxygen partial pressure (40 to 100 mTorr) and substrate temperature. The crystallinity of the films also increased with the substrate temperature. The electrical resistivity measurements showed that the resistivity of the films decreased with an increase in Ta doping, which exhibited the lowest resistivity (${\rho}{\sim}1.1{\times}10^{-3}{\Omega}{\cdot}cm$) for 10 wt% Ta-doped $SnO_2$ film, and then increased further. However, the resistivity continuously decreased with the oxygen partial pressure and substrate temperature. The optical bandgap of the 10 wt% Ta-doped $SnO_2$ film increased (3.67 to 3.78 eV) with an increase in film thickness from 100-700 nm, and the figure of merit revealed an increasing trend with the film thickness.

A Study on the Electrical and Optical Properties of SnO2/Cu(Ni)/SnO2 Multi-Layer Structures Transparent Electrode According to Annealing Temperature (열처리 온도에 따른 SnO2/Cu(Ni)/SnO2 다층구조 투명전극의 전기·광학적 특성)

  • Jeong, Ji-Won;Kong, Heon;Lee, Hyun-Yong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.2
    • /
    • pp.134-140
    • /
    • 2019
  • Oxide ($SnO_2$)/metal alloy (Cu(Ni))/oxide ($SnO_2$) multilayer films were fabricated using the magnetron sputtering technique. The oxide and metal alloy were $SnO_2$ and Ni-doped Cu, respectively. The structural, optical, and electrical properties of the multilayer films were investigated using X-ray diffraction (XRD), ultraviolet-visible (UV-vis) spectrophotometry, and 4-point probe measurements, respectively. The properties of the $SnO_2/Cu(Ni)/SnO_2$ multilayer films were dependent on the thickness and Ni doping of the mid-layer film. Since Ni atoms inhibit the diffusion and aggregation of Cu atoms, the grain growth of Cu is delayed upon Ni addition. For $250^{\circ}C$, the Haccke's figure of merit (FOM) of the $SnO_2$ (30 nm)/Cu(Ni) (8 nm)/$SnO_2$ (30 nm) multilayer film was evaluated to be $0.17{\times}10^{-3}{\Omega}^{-1}$.

Annealing of Sn Doped ZnO Thin Films Grown by Radio Frequency Powder Sputtering (라디오주파수 분말 스퍼터링 방법으로 성장시킨 주석을 도핑한 산화아연 박막의 열처리)

  • Lee, Haram;Jeong, Byeong Eon;Yang, Myeong Hun;Lee, Jong Kwan;Choi, Young Bin;Kang, Hyon Chol
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.31 no.3
    • /
    • pp.111-119
    • /
    • 2018
  • We report the post-annealing effect of Sn doped ZnO (ZnO:Sn) thin film grown on sapphire (001) substrate using radio-frequency powder sputtering method. During thermal annealing in a vacuum atmosphere, the ZnO:Sn thin film is transformed into a porous thin film. Based on X-ray diffraction, scanning electron microscopy, and energy dispersive X-ray analyses, a possible mechanism for the production of pores is presented. Sn atoms segregate to form clusters that act as catalysts to dissociate Zn-O bonds. The Zn and O atoms subsequently vaporize, leading to the formation of pores in the ZnO:Sn thin film. We also found that Sn clusters were oxidized to form SnO or $SnO_2$ phases.

Effect of Pr Doping in La-Sn-Mn-O

  • Kumar, Neeraj;Tripathi, Rahul;Dogra, Anjana;Awana, V.P.S.;Kishan, H.
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2008.12a
    • /
    • pp.156.2-156.2
    • /
    • 2008
  • PDF

Epitaxial growth of Tin Oxide thin films deposited by powder sputtering method

  • Baek, Eun-Ha;Kim, So-Jin;Gang, Hyeon-Cheol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.185.2-185.2
    • /
    • 2015
  • Tin Oxide (SnO2) has been widely investigated as a transparent conducting oxide (TCO) and can be used in optoelectronic devices such as solar cell and flat-panel displays. In addition, it would be applicable to fabricating the wide bandgap semiconductor because of its bandgap of 3.6 eV. There have been concentrated on the improvement of optical properties, such as conductivity and transparency, by doping Indium Oxide and Gallium Oxide. Recently, with development of fabrication techniques, high-qulaity SnO2 epitaxial thin films have been studied and received much attention to produce the electronic devices such as sensor and light-emitting diode. In this study, powder sputtering method was employed to deposit epitaxial thin films on sapphire (0001) substrates. A commercial SnO2 powder was sputtered. The samples were prepared with varying the growth parameters such as gas environment and film thickness. Then, the samples were characterized by using XRD, SEM, AFM, and Raman spectroscopy measurements. The details of physical properties of epitaxial SnO2 thin films will be presented.

  • PDF

The Effect of Sb doping on $SnO_2$ nanowires: Change of UV response and surface characteristic

  • Kim, Yun-Cheol;Ha, Jeong-Suk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.269-269
    • /
    • 2010
  • $SnO_2$ 나노선은 n-type의 전기적 특성과 우수한 광 특성을 보이며, 전자소자, 광소자 뿐 아니라 다양한 종류의 가스 센서 등에 응용되고 있다. 그러나 $SnO_2$ 나노선은 공기중에서 전기적으로 불안정한 특성을 보이며, 도핑을 하지 않은 나노선 소자에서는 전자의 모빌러티가 높지 않다는 단점을 갖고 있다. 이를 개선하고자 본 연구에서는 화학기상증착법 (Chemical Vapor Deposition)으로 Sb을 도핑한 $SnO_2$ 나노선을 성장하여 전계방출효과 트랜지스터 (field effect transistor: FET)를 제작하여 전기적 특성과 UV 반응성의 변화를 측정하였다. Sb 도핑 양을 늘려감에 따라 전기적 특성이 반도체 특성에서 점점 금속 특성으로 변하는 것과 게이트 전압의 영향을 적게 받는 것을 확인하였다. 또한 도핑을 해준 $SnO_2$ 나노선의 경우 UV 반응과 회복 시간이 기존에 비하여 크게 감소하여 UV 센서에 더욱 적합해진 것을 확인하였다. 또한, 슬라이딩 트랜스퍼 공정을 이용하여 나노선을 원하는 기판에 정렬된 상태로 전이할 때 도핑한 나노선은 표면특성의 변화로 정렬도가 크게 감소하는 것을 확인하였고, 기판에 윤활제를 사용하여 정렬도를 높일 수 있었다.

  • PDF

Characterization of O2 ionosorption induced potential changing property of SnO2 nanowire with Kelvin force microscopy (KFM)

  • Heo, Jinhee;Won, Soonho
    • Journal of Ceramic Processing Research
    • /
    • v.13 no.spc2
    • /
    • pp.359-362
    • /
    • 2012
  • We have employed Kelvin force microscopy (KFM) system to measure the potential change of a single SnO2 nanowire which had been synthesized on the Au thin film by a thermal process. By using the KFM probing technique, Rh coated conducting cantilever can approach a single SnO2 nanowire in nano scale and get the potential images with oscillating AC bias between Au electrode and cantilever. Also, during imaging the potential status, we controlled the concentration of oxygen in measuring chamber to change the ionosorption rate. From the results of such experiments, we verified that the surface potential as well as doping type of a single SnO2 nanowire could be changed by oxygen ionosorption.