DOI QR코드

DOI QR Code

Ta Doped SnO2 Transparent Conducting Films Prepared by PLD

  • Cho, Ho Je (School of Materials Science & Engineering, Changwon National University) ;
  • Seo, Yong Jun (School of Materials Science & Engineering, Changwon National University) ;
  • Kim, Geun Woo (School of Materials Science & Engineering, Changwon National University) ;
  • Park, Keun Young (School of Materials Science & Engineering, Changwon National University) ;
  • Heo, Si Nae (School of Materials Science & Engineering, Changwon National University) ;
  • Koo, Bon Heun (School of Materials Science & Engineering, Changwon National University)
  • 투고 : 2013.07.08
  • 심사 : 2013.08.07
  • 발행 : 2013.08.27

초록

Transparent and conducting thin films of Ta-doped $SnO_2$ were fabricated on a glass substrate by a pulse laser deposition(PLD) method. The structural, optical, and electrical properties of these films were investigated as a function of doping level, oxygen partial pressure, substrate temperature, and film thickness. XRD results revealed that all the deposited films were polycrystalline and the intensity of the (211) plane of $SnO_2$ decreased with an increase of Ta content. However, the orientation of the films changed from (211) to (110) with an increase in oxygen partial pressure (40 to 100 mTorr) and substrate temperature. The crystallinity of the films also increased with the substrate temperature. The electrical resistivity measurements showed that the resistivity of the films decreased with an increase in Ta doping, which exhibited the lowest resistivity (${\rho}{\sim}1.1{\times}10^{-3}{\Omega}{\cdot}cm$) for 10 wt% Ta-doped $SnO_2$ film, and then increased further. However, the resistivity continuously decreased with the oxygen partial pressure and substrate temperature. The optical bandgap of the 10 wt% Ta-doped $SnO_2$ film increased (3.67 to 3.78 eV) with an increase in film thickness from 100-700 nm, and the figure of merit revealed an increasing trend with the film thickness.

키워드

참고문헌

  1. P. S Patil, P. K. Kawar, S. B. Sadale, P. S. Chigare, Thin Solid Films 437, 34 (2003). https://doi.org/10.1016/S0040-6090(03)00680-1
  2. Laverty S. J., Feng H., Mauire P., J. Electrochem Soc. 144, 2165 (1997). https://doi.org/10.1149/1.1837758
  3. W. A. Badway, H. H. Afifi, and E. M. Elgari, J. Electrochem. Soc. 137, 1592 (1990). https://doi.org/10.1149/1.2086733
  4. D. S Ginely and C. Bright, Mater. Res. Bull. 25, 15 (2000).
  5. R. Lalauze, P. Breuil, C. Pijolat, Sensor Actuatros B7, 709 (1992).
  6. Y. k. Fang, J. J. Lee, Thin Solid Films 169, 51 (1989). https://doi.org/10.1016/S0040-6090(89)80004-5
  7. K. L. Chopra, S. Major, D. K. Pandya, Thin Solid Films 102, 1 (1983). https://doi.org/10.1016/0040-6090(83)90256-0
  8. Matthew S. Dabney, Maikel F. A. M. van Hest, Charles W. Teplin, S. Phil Arenkiel, John D. Perkins, David S. GinleyThin Solid Films 516, 4133 (2008). https://doi.org/10.1016/j.tsf.2007.10.093
  9. H. Kim and A. Pique App. Phys. Lett. 84, 218 (2004). https://doi.org/10.1063/1.1639515
  10. A. Martin, J. P. Espinos, A. Justo, J. P. Holgado, F. Yubero, A. R. Gonzalez-Elipe, Surf. Coat. Tech. 151-152, 289 (2002). https://doi.org/10.1016/S0257-8972(01)01609-7
  11. R. M. Ataev, A. M. Bagamadova, A. M. Djabrailov, V. V. Mamedov, R. A. Rabadanov, Thin Solid Films 260, 19 (1995). https://doi.org/10.1016/0040-6090(94)09485-3
  12. M. T. Mohammad, A. A. Hashimb, M. H. Al-Maamoryc, Materials Chemistry and Physics 99, 382- (2006). https://doi.org/10.1016/j.matchemphys.2005.11.009
  13. Takashi Ogi, DarmawanHidayat, Ferry Iskandar, Agus Purwanto, KikuoOkuyama, Advanced Powder Technology 20, 203 (2009). https://doi.org/10.1016/j.apt.2008.09.002
  14. A. Amaral, P. Brogueira C. Nunes de Carvalho, G. Lavareda, Surf.Coat. Tech. 125, 151 (2000). https://doi.org/10.1016/S0257-8972(99)00596-4
  15. C. Terrier, J. P. Chatelon, J. A. Roger, Thin Solid Films 295, 95 (1997). https://doi.org/10.1016/S0040-6090(96)09324-8
  16. F. K. Shan, G. X. Liu, W. J. Lee, G. H. Lee, I. S. Kim, B. C. Shin, Y. C. Kim, J. Crystal Growth 277, 284 (2005). https://doi.org/10.1016/j.jcrysgro.2005.01.016
  17. X. Bie, J. G. Lu, L. Gong, L. Lin, B. H. Zhao, Z.Z. Ye, Applied Surface Science 256, 289 (2009). https://doi.org/10.1016/j.apsusc.2009.08.018
  18. H. Kim, J. S. Horwitz, G. P. Kushto, Z. H. Kafafi, and D. B. Chrisey, Appl. Phys. Lett. 79, 284 (2001).
  19. B. Thangaraju, Thin Solid Films 402, 71 (2002). https://doi.org/10.1016/S0040-6090(01)01667-4
  20. K. Tonooka, Te-Wei Chiu, N. Kikuchi, Appl. Surf. Sci. 255, 9695 (2009).
  21. H. Kim, C. M. Gilmore, A. Piqué, J. S. Horwitz, H. Mattoussi, H. Murata, Z. H. Kafafi, and D. B. Chrisey, J. Appl. Phys. 86, 6451 (1999). https://doi.org/10.1063/1.371708
  22. R. J. Deokate, S. V. Salunnkhe, G. L Agawane, B. S Pawar, S. M. Pawar, K. Y. Rajpure, A. V. Moholkar, J. H. Kim, J. Alloys Compd. 496, 357 (2010). https://doi.org/10.1016/j.jallcom.2010.01.150

피인용 문헌

  1. Influences of Pr and Ta doping concentration on the characteristic features of FTO thin film deposited by spray pyrolysis vol.24, pp.10, 2015, https://doi.org/10.1088/1674-1056/24/10/107301