Browse > Article
http://dx.doi.org/10.4150/KPMI.2022.29.2.152

Recent Studies on Performance Enhancement of Polycrystal SnSe Thermoelectric Materials  

Jung, Myeong Jun (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
Choi, Byung Joon (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
Publication Information
Journal of Powder Materials / v.29, no.2, 2022 , pp. 152-158 More about this Journal
Abstract
Thermoelectric materials can reversely convert heat and electricity into each other; therefore, they can be very useful for energy harvesting from heat waste. Among many thermoelectrical materials, SnSe exhibits outstanding thermoelectric performance along the particular direction of a single crystal. However, single-crystal SnSe has poor mechanical properties and thus it is difficult to apply for mass production. Therefore, polycrystalline SnSe materials may be used to replace single-crystal SnSe by overcoming its inferior thermoelectric performance owing to surface oxidation. Considerable efforts are currently focused on enhancing the thermoelectric performance of polycrystalline SnSe. In this study, we briefly review various enhancement methods for SnSe thermoelectric materials, including doping, texturing, and nano-structuring. Finally, we discuss the future prospects of SnSe thermoelectric powder materials.
Keywords
Thermoelectric materials; Thermoelectric performance; SnSe; Texturing; Nano-structuring;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 J. Wei, L. Yang, Z. Ma, P. Song, M. Zhang, J. Ma, F. Yang and X. Wang: J. Mater. Sci., 55 (2020) 12642.   DOI
2 J. R. Sootsman, D. Y. Chung, and M. G. Kanatzidis: Angew. Chem. Int. Ed., 48 (2009) 8616.   DOI
3 G. J. Snyder and E. S. Toberer: Nat. Mater., 7 (2008) 105.   DOI
4 Z.-G. Chen, X. Shi, L.-D. Zhao and J. Zou: Prog. Mater. Sci., 97 (2018) 283.   DOI
5 N. Kumar Singh, S. Bathula, B. Gahtori, K. Tyagi, D. Haranath and A. Dhar: J. Alloys Compd., 668 (2016) 1528.
6 S. R. Popuri, M. Pollet, R. Decourt, F. D. Morrison, N. S. Bennett and J. W. G. Bos: J. Mater. Chem. C., 4 (2016) 1685.   DOI
7 C.-L. Chen, H. Wang, Y.-Y. Chen, T. Day and G. J. Snyder: J. Mater. Chem. A, 2 (2014) 11171.   DOI
8 Song Chen, Kefeng Cai, Wenyu Zhao: Phys. B: Condens. Matter., 407 (2012) 41549.
9 G. Han, S. R. Popuri, H. F. Greer, L. F. Llin, J.-W. G. Bos, W. Zhou, D. J. Paul, H. Menard, A. R. Knox, A. Montecucco, J. Siviter, E. A. Man, W.-G. Li, Manosh C. Paul, M. Gao, T. Sweet, R. Freer, F. Azough, H. Baig, T. K. Mallick and D. H. Gregory: Adv. Energy Mater., 7 (2017) 1602328.   DOI
10 Q. Zhang, E. K. Chere, J. Sun, F. Cao, K. Dahal, S. Chen, G. Chen and Z. Ren: Adv. Energy Mater., 5 (2015) 1500360.   DOI
11 P.-P. Shang, J. Dong, J. Pei, F.-H. Sun, Y. Pan, H. Tang, B.-P. Zhang, L.-D. Zhao and J.-F. Li: Research, 2019 (2019) 10.
12 Z. H. Ge, K. Wei, H. Lewis, J. Martin and G. S. Nolas: J. Solid. State. Chem., 225 (2015) 354.   DOI
13 X. Shi, An. Wu, W. Liu, R. Moshwan, Y. Wang, Z.-G. Chen and J. Zou: ACS Nano, 12 (2018) 11417.   DOI
14 H. Ju and J. Kim: ACS Nano, 10 (2016) 5730.   DOI
15 R. Zhang, Z. Zhou, Q. Yao, N. Qi and Z. Chen: Phys. Chem. Chem. Phys., 23 (2021) 3794.   DOI
16 Y.-X. Chen, Z.-H. Ge, M. Yin, D. Feng, X.-Q. Huang, W. Zhao and J. He: Adv. Funct. Mater., 26 (2016) 6836.   DOI
17 J. O. M. Ferreiro, D. E. Diaz-Droguett, D. Celentano, J. S. Reparaz, C. M. S. Torres, S. Ganguli and T. Lu: Appl. Therm. Eng., 111 (2017) 1426.   DOI
18 C. Zhou, Y. K. Lee, Y. Yu, S. Byun, Z.-Z. Luo, H. Lee, B. Ge, Y.-L. Lee, X. Chen, J. Y. Lee, O. Cojocaru-Miredin, H. Chang, J. Im, S.-P. Cho, M. Wuttig, V. P. Dravid, M. G. Kanatzidis and I. Chung: Nat. Mater., 20 (2021) 1378.   DOI
19 F. Chu, Q. Zhang, Z. Zhou, D. Hou, L. Wang and W. Jiang: J. Alloys Compd., 741 (2018) 756.   DOI
20 X. Wang, J. Xu, G. Liu, Y. Fu, Z. Liu, X. Tan, H. Shao, H. Jiang, T. Tan and J. Jiang: Appl. Phys. Lett., 108 (2016) 083902.   DOI
21 Y. Li, F. Li, Ji. Dong, Z. Ge, F. Kang, J. He, H. Du, B. Lia and J.-F. Li: J. Mater. Chem. C., 4 (2016) 2047.   DOI
22 S. Li, Y. Liu, F. Liu, D. He, J. He, J. Luo, Y. Xiao and F. Pan: Nano Energy, 49 (2018) 257.   DOI
23 J. A. Hernandez, A. Ruiz, L. F. Fonseca, M. T. Pettes, M. Jose-Yacaman and A. Benitez: Sci. Rep., 8 (2018) 1.
24 J. C.Li, D. Li, X. Y. Qin and J. Zhang: Scr. Mater., 126 (2017) 6.   DOI
25 H. Ju and J. Kim: Ceram. Int., 42 (2016) 9550.   DOI
26 D. Feng, Z.-H. Ge, D. Wu, Y.-X. Chen, T. Wu, J. Li and J. He: Phys. Chem. Chem. Phys., 18 (2016), 31821.   DOI
27 D. Li, J.C. Li, X.Y. Qin, J. Zhang, H. X. Xin, C. J. Song and L. Wang: Energy, 116 (2016) 861.   DOI
28 F. Q. Wang, S. Zhang, J. Yuc and Q. Wang: Nanoscale, 7 (2015) 15962.   DOI
29 G. Tang, W. Wei, J. Zhang, Y. Li, X. Wang, G. Xu, C. Chang, Z. Wang, Y. Du and L.-D. Zhao: J. Am. Chem. Soc., 138 (2016) 13647.   DOI
30 K.-C. Kim, S.-S. Lim, S. H. Lee, J. Hong, D.-Y. Cho, A. Y. Mohamed, C. M. Koo, S.-H. Baek, J.-S. Kim and S. K. Kim: ACS Nano, 13 (2019) 7146.   DOI
31 S. Lee, T.-J. Park and S. K. Kim: J. Powder Mater., 29 (2022) 56.
32 M. J. Jung, Y. J. Yun, J. Byun and B. J. Choi: J. Powder Mater., 28 (2021) 239.