• Title/Summary/Keyword: Sn bump

Search Result 146, Processing Time 0.032 seconds

Effect of Thermal Aging on the Intermetallic compound Growth kinetics in the Cu pillar bump (Cu pillar 범프 내의 금속간화합물 성장거동에 미치는 시효처리의 영향)

  • Lim, Gi-Tae;Lee, Jang-Hee;Kim, Byoung-Joon;Lee, Ki-Wook;Lee, Min-Jae;Joo, Young-Chang;Park, Young-Bae
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.14 no.4
    • /
    • pp.15-20
    • /
    • 2007
  • Growth kinetics of intermetallic compound (IMC) at various interface in Cu pillar bump during aging have been studied by thermal aging at 120, 150 and $165^{\circ}C$ for 300h. In result, $Cu_6Sn_5\;and\;Cu_3Sn$ were observed in the Cu pillar/SnPb interface and IMC growth followed parabolic law with increasing aging temperatures and time. Also, growth kinetics of IMC layer was faster for higher aging temperature with time. Kirkendall void formed at interface between Cu pillar and $Cu_3Sn$ as well as within the $Cu_3Sn$ layer and propagated with increasing time. $(Cu,Ni)_6Sn_5$ formed at interface between SnPb and Ni(P) after reflow and thickness change of $(Cu,Ni)_6Sn_5$ didn't observe with aging time. The apparent activation energies for growth of total $(Cu_6Sn_5+Cu_3Sn),\;Cu_6Sn_5\;and\;Cu_3Sn$ intermetallics from measurement of the IMC thickness with thermal aging temperature and time were 1.53, 1.84 and 0.81 eV, respectively.

  • PDF

Characterization of the SnAg Electrodeposits according to the Current Density and Cross-sectional Microstructure Analysis in the Cu Pillar Solder Bump (전류밀도에 따른 SnAg 도금층의 특성 및 Cu 필라 솔더 범프의 단면 미세구조 측정)

  • Kim, Sang-Hyuk;Hong, Seong-Ki;Yim, Hyunho;Lee, Hyo-Jong
    • Journal of the Korean institute of surface engineering
    • /
    • v.48 no.4
    • /
    • pp.131-135
    • /
    • 2015
  • We investigated the surface morphology and the change of Ag concentration for SnAg electrodeposits according to the current density using labmade and commercial plating solutions. The concentration of Ag in the SnAg electrodeposits decreased with increasing the current density. The Ag concentrations at the conditions of over $50mA/cm^2$ were below 3 wt% and the surface was relatively smooth. Cu pillar bump was fabricated by using SnAg electroplating, and it was reflowed at $240^{\circ}C$ for 90 sec. The cross-sectional microstructure was investigated by using EBSD measurement and it was found that the grain size of SnAg became smaller by increasing the number of reflow treatments.

Interfacial Reactions of Sn Solder with Variations of Under-Bump-Metallurgy and Reflow Time (Under Bump Metallurgy의 종류와 리플로우 시간에 따른 Sn 솔더 계면반응)

  • Park, Sun-Hee;Oh, Tae-Sung;Englemann, G.
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.14 no.3
    • /
    • pp.43-49
    • /
    • 2007
  • Thickness of intermetallic compounds and consumption rates of under bump metallurgies (UBMs) were investigated in wafer-level solder bumping with variations of UBM materials and reflow times. In the case of Cu UBM, $0.6\;{\mu}m-thick$ intermetallic compound layer was formed before reflow of Sn solder, and the average thickness of the intermetallic compound layer increased to $4\;{\mu}m$ by reflowing at $250^{\circ}C$ for 450 sec. On the contrary, the intermetallic layer had a thickness of $0.2\;{\mu}m$ on Ni UBM before reflow and it grew to $1.7\;{\mu}m$ thickness with reflowing for 450 sec. While the consumption rates of Cu UBM were 100nm/sec fur 15-sec reflow and 4.50-sec for 450-sec reflow, those of Ni UBM decreased to 28.7 nm/sec for 15-sec reflow and 1.82 nm/sec for 450-sec reflow.

  • PDF

Surface Roughness of the Electroplated Sn with Variations of Electrodeposition Parameters and Contact Resistance of the Flip-chip-bonded Sn Bumps (Electrodeposition 변수에 따른 Sn 도금의 표면 거칠기와 플립칩 접속된 Sn 범프의 접속저항)

  • Jung, Boo-Yang;Park, Sun-Hee;Kim, Young-Ho;Oh, Tae-Sung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.13 no.4
    • /
    • pp.37-43
    • /
    • 2006
  • Surface roughness and hardness of the electroplated Sn were characterized with variations of electroplating current density and current mode. The Sn electroplated at $5{\sim}50mA/cm^{2}$ exhibited the surface roughness of $2.0{\sim}2.4{\mu}m$. The Sn electroplated with pulse current mode exhibited low surface roughness compared one processed with direct current mode. With surface annealing at $300^{\circ}C$ for 3 sec using halogen lamp, surface roughness of the Sn bump was substantially reduced to $1{\mu}m$. The Sn electroplated at $5{\sim}50mA/cm^{2}$ exhibited the hardness of 10 Hv. Low contact resistances of $33{\sim}17m{\Omega}$ were obtained for specimens flip-chip bonded with Sn bumps.

  • PDF

A New COG Technique Using Solder Bumps for Flat Panel Display

  • Lee, Min-Seok;Kang, Un-Byoung;Kim, Young-Ho
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.1005-1008
    • /
    • 2003
  • We report a new FCOG (flip chip on glass) technique using solder bumps for display packaging applications. The In and Sn solder bumps of 40 ${\mu}m$ pitches were formed on Si and glass substrate. The In and Sn bumps were bonded at 125 at the pressure of 3 mN/bump. The metallurgical bonding was confirmed using cross-sectional SEM. The contact resistance of the solder joint was 65 $m{\Omega}$ which was much lower than that of the joint made using the conventional ACF bonding technique. We demonstrate that the new COG technique using solder bump to bump direct bonding can be applied to advanced LCDs that lead to require higher quality, better resolution, and lower power consumption.

  • PDF

A study on the interfacial reactions between electroless Ni-P UBM and 95.5Sn-4.0Ag-0.5Cu solder bump (무전해 Ni-P UBM과 95.5Sn-4.0Ag-0.5Cu 솔더와의 계면반응 및 신뢰성에 대한 연구)

  • ;;Sabine Nieland;Adreas Ostmann;Herbert Reich
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2002.05a
    • /
    • pp.85-91
    • /
    • 2002
  • Even though electroless Hi and Sn-Ag-Cu solder are widely used materials in electronic packaging applications, interfacial reactions of the ternary Ni-Cu~Sn system have not been known well because of their complexity. Because the growth of intermetallics at the interface affects reliability of solder joint, the intermetallics in Ni-Cu-Sn system should be identified, and their growth should be investigated. Therefore, in present study, interfacial reactions between electroless Ni UB7f and 95.5Sn-4.0Ag-0.5Cu alloy were investigated focusing on morphology of the IMCs, thermodynamics, and growth kinetics. The IMCs that appear during a reflow and an aging are different each other. In early stage of a reflow, ternary IMC whose composition is Ni$_{22}$Cu$_{29}$Sn$_{49}$ forms firstly. Due to the lack of Cu diffusion, Ni$_{34}$Cu$_{6}$Sn$_{60}$ phase begins growing in a further reflow. Finally, the Ni$_{22}$Cu$_{29}$Sn$_{49}$ IMC grows abnormally and spalls into the molten solder. The transition of the IMCs from Ni$_{22}$Cu$_{29}$Sn$_{49}$ to Ni$_{34}$Cu$_{6}$Sn$_{60}$ was observed at a specific temperature. From the measurement of activation energy of each IMC, growth kinetics was discussed. In contrast to the reflow, three kinds of IMCs (Ni$_{22}$Cu$_{29}$Sn$_{49}$, Ni$_{20}$Cu$_{28}$Au$_{5}$, and Ni$_{34}$Cu$_{6}$Sn$_{60}$) were observed in order during an aging. All of the IMCs were well attached on UBM. Au in the quaternary IMC, which originates from immersion Au plating, prevents abnormal growth and separation of the IMC. Growth of each IMC is very dependent to the aging temperature because of its high activation energy. Besides the IMCs at the interface, plate-like Ag3Sn IMC grows as solder bump size inside solder bump. The abnormally grown Ni$_{22}$Cu$_{29}$Sn$_{49}$ and Ag$_3$Sn IMCs can be origins of brittle failure.failure.

  • PDF