• Title/Summary/Keyword: Smoothing Algorithm

Search Result 440, Processing Time 0.025 seconds

Wavelength selection by loading vector analysis in determining total protein in human serum using near-infrared spectroscopy and Partial Least Squares Regression

  • Kim, Yoen-Joo;Yoon, Gil-Won
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.4102-4102
    • /
    • 2001
  • In multivariate analysis, absorbance spectrum is measured over a band of wavelengths. One does not often pay attention to the size of this wavelength band. However, it is desirable that spectrum is measured at only necessary wavelengths as long as the acceptable accuracy of prediction can be met. In this paper, the method of selecting an optimal band of wavelengths based on the loading vector analysis was proposed and applied for determining total protein in human serum using near-infrared transmission spectroscopy and PLSR. Loading vectors in the full spectrum PLSR were used as reference in selecting wavelengths, but only the first loading vector was used since it explains the spectrum best. Absorbance spectra of sera from 97 outpatients were measured at 1530∼1850 nm with an interval of 2 nm. Total protein concentrations of sera were ranged from 5.1 to 7.7 g/㎗. Spectra were measured by Cary 5E spectrophotometer (Varian, Australia). Serum in the 5 mm-pathlength cuvette was put in the sample beam and air in the reference beam. Full spectrum PLSR was applied to determine total protein from sera. Next, the wavelength region of 1672∼1754 nm was selected based on the first loading vector analysis. Standard Error of Cross Validation (SECV) of full spectrum (1530∼l850 nm) PLSR and selected wavelength PLSR (1672∼1754 nm) was respectively 0.28 and 0.27 g/㎗. The prediction accuracy between the two bands was equal. Wavelength selection based on loading vector in PLSR seemed to be simple and robust in comparison to other methods based on correlation plot, regression vector and genetic algorithm. As a reference of wavelength selection for PLSR, the loading vector has the advantage over the correlation plot since the former is based on multivariate model whereas the latter, on univariate model. Wavelength selection by the first loading vector analysis requires shorter computation time than that by genetic algorithm and needs not smoothing.

  • PDF

Performance Improvement of Radial Basis Function Neural Networks Using Adaptive Feature Extraction (적응적 특징추출을 이용한 Radial Basis Function 신경망의 성능개선)

  • 조용현
    • Journal of Korea Multimedia Society
    • /
    • v.3 no.3
    • /
    • pp.253-262
    • /
    • 2000
  • This paper proposes a new RBF neural network that determines the number and the center of hidden neurons based on the adaptive feature extraction for the input data. The principal component analysis is applied for extracting adaptively the features by reducing the dimension of the given input data. It can simultaneously achieve a superior property of both the principal component analysis by mapping input data into set of statistically independent features and the RBF neural networks. The proposed neural networks has been applied to classify the 200 breast cancer databases by 2-class. The simulation results shows that the proposed neural networks has better performances of the learning time and the classification for test data, in comparison with those using the k-means clustering algorithm. And it is affected less than the k-means clustering algorithm by the initial weight setting and the scope of the smoothing factor.

  • PDF

Adaptive Noise Removal Based on Nonstationary Correlation (영상의 비정적 상관관계에 근거한 적응적 잡음제거 알고리듬)

  • 박성철;김창원;강문기
    • Journal of Broadcast Engineering
    • /
    • v.8 no.3
    • /
    • pp.278-287
    • /
    • 2003
  • Noise in an image degrades image quality and deteriorates coding efficiency. Recently, various edge-preserving noise filtering methods based on the nonstationary image model have been proposed to overcome this problem. In most conventional nonstationary image models, however, pixels are assumed to be uncorrelated to each other in order not to Increase the computational burden too much. As a result, some detailed information is lost in the filtered results. In this paper, we propose a computationally feasible adaptive noise smoothing algorithm which considers the nonstationary correlation characteristics of images. We assume that an image has a nonstationary mean and can be segmented into subimages which have individually different stationary correlations. Taking advantage of the special structure of the covariance matrix that results from the proposed image model, we derive a computationally efficient FFT-based adaptive linear minimum mean-square-error filter. Justification for the proposed image model is presented and effectiveness of the proposed algorithm is demonstrated experimentally.

Density Measurement for Continuous Flow Segment Using Two Point Detectors (두 개의 지점 검지기를 이용한 연속류 구간의 밀도측정 방안)

  • Kim, Min-Sung;Eom, Ki-Jong;Lee, Chung-Won
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.8 no.1
    • /
    • pp.37-44
    • /
    • 2009
  • Density is the most important congestion indicator among the three fundamental flow variables, flow, speed and density. Measuring density in the field has two different ways, direct and indirect. Taking photos with wide views is one of direct ways, which is not widely used because of its cost and lacking of proper positions. Another direct density measuring method using two spot detectors has been introduced with the concept of instantaneous density, average density and measurement interval. The relationship between accuracy and measurement interval has been investigated using the simulation data produced by Paramics API function. Finally, density measurement algorithm has been suggested including exponential smoothing for device development.

  • PDF

4D Inversion of the Resistivity Monitoring Data with Focusing Model Constraint (강조 모델제한을 적용한 전기비저항 모니터링 자료의 4차원 역산)

  • Cho, In-Ky;Jeong, Da-Bhin
    • Geophysics and Geophysical Exploration
    • /
    • v.21 no.3
    • /
    • pp.139-149
    • /
    • 2018
  • The resistivity monitoring is a practical method to resolve changes in resistivity of underground structures over time. With the advance of sophisticated automatic data acquisition system and rapid data communication technology, resistivity monitoring has been widely applied to understand spatio-temporal changes of subsurface. In this study, a new 4D inversion algorithm is developed, which can effectively emphasize significant changes of underground resistivity with time. To overcome the overly smoothing problem in 4D inversion, the Lagrangian multipliers in the space-domain and time-domain are determined automatically so that the proportion of the model constraints to the misfit roughness remains constant throughout entire inversion process. Furthermore, a focusing model constraint is added to emphasize significant spatio-temporal changes. The performance of the developed algorithm is demonstrated by the numerical experiments using the synthetic data set for a time-lapse model.

Frame Interpolation using Bilateral Motion Refinement with Rotation (회전을 고려한 정밀 양방향 움직임 예측 프레임 보간 기법)

  • Lee, Min-Kyu;Park, Hyun-Wook
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.46 no.5
    • /
    • pp.135-142
    • /
    • 2009
  • Since hold-type display systems have been developed, frame-rate up conversion (FRUC) is an essential technique to improve the temporal resolution in the display. FRUC improves the temporal resolution by interpolating one or multiple intermediate frames between two adjacent frames. In this paper, a new frame-rate up-conversion algorithm based on bilateral motion refinement with rotation is proposed. First, we perform bi-directional motion estimation between adjacent two frames to obtain a motion vector for each block. Then, we apply a modified median filtering to motion vectors for outlier-rejection and motion field smoothing. The filtered motion vectors are updated by the bilateral motion refinement with rotation. After the refined motion vector is obtained, the intermediate frame is generated by applying the overlapped block motion compensation (OBMC). Experimental results show that the proposed algorithm provides a better performance than the previous methods subjectively and objectively.

Optimal Project Duration Estimation Through Enhanced Resource Leveling Technique (개선된 자원 평준화 기법을 활용한 적정 공기산정 방안)

  • Kim Kyung-Hwan;Yoon Yung-Sang;Kim Jae-Jun
    • Korean Journal of Construction Engineering and Management
    • /
    • v.5 no.5 s.21
    • /
    • pp.126-134
    • /
    • 2004
  • Since a construction project is a series of works that utilizes resources to accomplish the project goal for a given time period, efficient resource management is a prerequisite for the success of the project. Two major areas of resource management are resource constrained scheduling focusing on the limited resource availability and resource leveling focusing on smoothing resource usage pattern on the fixed project completion time. It is not available, however, to apply both techniques to a project at the same time. This paper proposes a model to enhance the minimum moment algorithm of resource leveling, aiming to find an efficient usage of resources and an appropriate project completion time. A survey was performed to evaluate the major five factors in the model. A case study demonstrates the value of the proposed resource leveling technique.

Prediction of Power Consumption for Improving QoS in an Energy Saving Server Cluster Environment (에너지 절감형 서버 클러스터 환경에서 QoS 향상을 위한 소비 전력 예측)

  • Cho, Sungchoul;Kang, Sanha;Moon, Hungsik;Kwak, Hukeun;Chung, Kyusik
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.4 no.2
    • /
    • pp.47-56
    • /
    • 2015
  • In an energy saving server cluster environment, the power modes of servers are controlled according to load situation, that is, by making ON only minimum number of servers needed to handle current load while making the other servers OFF. This algorithm works well under normal circumstances, but does not guarantee QoS under abnormal circumstances such as sharply rising or falling loads. This is because the number of ON servers cannot be increased immediately due to the time delay for servers to turn ON from OFF. In this paper, we propose a new prediction algorithm of the power consumption for improving QoS under not only normal but also abnormal circumstances. The proposed prediction algorithm consists of two parts: prediction based on the conventional time series analysis and prediction adjustment based on trend analysis. We performed experiments using 15 PCs and compared performance for 4 types of conventional time series based prediction methods and their modified methods with our prediction algorithm. Experimental results show that Exponential Smoothing with Trend Adjusted (ESTA) and its modified ESTA (MESTA) proposed in this paper are outperforming among 4 types of prediction methods in terms of normalized QoS and number of good reponses per power consumed, and QoS of MESTA proposed in this paper is 7.5% and 3.3% better than that of conventional ESTA for artificial load pattern and real load pattern, respectively.

Stereo Matching For Satellite Images using The Classified Terrain Information (지형식별정보를 이용한 입체위성영상매칭)

  • Bang, Soo-Nam;Cho, Bong-Whan
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.4 no.1 s.6
    • /
    • pp.93-102
    • /
    • 1996
  • For an atomatic generation of DEM(Digital Elevation Model) by computer, it is a time-consumed work to determine adquate matches from stereo images. Correlation and evenly distributed area-based method is generally used for matching operation. In this paper, we propose a new approach that computes matches efficiantly by changing the size of mask window and search area according to the given terrain information. For image segmentation, at first edge-preserving smoothing filter is used for preprocessing, and then region growing algorithm is applied for the filterd images. The segmented regions are classifed into mountain, plain and water area by using MRF(Markov Random Filed) model. Maching is composed of predicting parallex and fine matching. Predicted parallex determines the location of search area in fine matching stage. The size of search area and mask window is determined by terrain information for each pixel. The execution time of matching is reduced by lessening the size of search area in the case of plain and water. For the experiments, four images which are covered $10km{\times}10km(1024{\times}1024\;pixel)$ of Taejeon-Kumsan in each are studied. The result of this study shows that the computing time of the proposed method using terrain information for matching operation can be reduced from 25% to 35%.

  • PDF

Integration of Motion Compensation Algorithm for Predictive Video Coding (예측 비디오 코딩을 위한 통합 움직임 보상 알고리즘)

  • Eum, Ho-Min;Park, Geun-Soo;Song, Moon-Ho
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.36S no.12
    • /
    • pp.85-96
    • /
    • 1999
  • In a number of predictive video compression standards, the motion is compensated by the block-based motion compensation (BMC). The effective motion field used for the prediction by the BMC is obviously discontinuous since one motion vector is used for the entire macro-block. The usage of discontinuous motion field for the prediction causes the blocky artifacts and one obvious approach for eliminating such artifacts is to use a smoothed motion field. The optimal procedure will depend on the type of motion within the video. In this paper, several procedures for the motion vectors are considered. For any interpolation or approaches, however, the motion vectors as provided by the block matching algorithm(BMA) are no longer optimal. The optimum motion vectors(still one per macro-block) must minimize the of the displaced frame difference (DFD). We propose a unified algorithm that computes the optimum motion vectors to minimize the of the DFD using a conjugate gradient search. The proposed algorithm has been implemented and tested for the affine transformation based motion compensation (ATMC), the bilinear transformation based motion compensation (BTMC) and our own filtered motion compensation(FMC). The performance of these different approaches will be compared against the BMC.

  • PDF