Browse > Article
http://dx.doi.org/10.7582/GGE.2018.21.3.139

4D Inversion of the Resistivity Monitoring Data with Focusing Model Constraint  

Cho, In-Ky (Division of Geology and Geophysics, Kangwon National University)
Jeong, Da-Bhin (Division of Geology and Geophysics, Kangwon National University)
Publication Information
Geophysics and Geophysical Exploration / v.21, no.3, 2018 , pp. 139-149 More about this Journal
Abstract
The resistivity monitoring is a practical method to resolve changes in resistivity of underground structures over time. With the advance of sophisticated automatic data acquisition system and rapid data communication technology, resistivity monitoring has been widely applied to understand spatio-temporal changes of subsurface. In this study, a new 4D inversion algorithm is developed, which can effectively emphasize significant changes of underground resistivity with time. To overcome the overly smoothing problem in 4D inversion, the Lagrangian multipliers in the space-domain and time-domain are determined automatically so that the proportion of the model constraints to the misfit roughness remains constant throughout entire inversion process. Furthermore, a focusing model constraint is added to emphasize significant spatio-temporal changes. The performance of the developed algorithm is demonstrated by the numerical experiments using the synthetic data set for a time-lapse model.
Keywords
Resistivity monitoring; 4D inversion; focusing model constraint;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Constable, S. C., Parker, R. L., and Constable, C. G., 1987, Occam's inversion: a practical algorithm for generating smooth models from EM sounding data, Geophysics, 52(3), 289-300.   DOI
2 Cassiani, G., Bruno, V., Villa, A., Fusi, N., and Binley, A. M., 2006, A saline trace test monitored via time-lapse surface electrical resistivity tomograph, J. Appl. Geophys., 59(3), 244-259.   DOI
3 Day-Lewis, F. D., Harris, J. M., and Gorelick, S. M., 2002, Time-lapse inversion of crosswell radar data, Geophysics, 67(6), 1740-1752.   DOI
4 Hayley, K., Pidlisecky, A., and Bentley, L. R., 2011, Simultaneous time-lapse electrical resistivity inversion, J. Appl. Geophys., 75(2), 401-411.   DOI
5 Jayawickreme, D. H., Van Dam, R. L., and Hyndman, D. W., 2010. Hydrological consequences of land-cover change: quantifying the influence of plants on soil moisture with timelapse electrical resistivity, Geophysics, 75(4), WA43-A50.   DOI
6 Karaoulis, M., Kim, J. H., and Tsourlos, P. I., 2011, 4D active time constrained inversion, J. Appl. Geophys., 73(1), 25-34.   DOI
7 Karaoulis, M., Tsourlos, P. I., Kim, J. H., and Revil, A., 2014, 4D time-lapse ERT inversion: introducing combined time and space constraints, Near Surf. Geophys., 12(1), 25-34.
8 Kemna, A., Vanderborght, J., Kulessa, B., and Vereecken, H., 2002, Imaging and characterization of subsurface solute transport using electrical resistivity tomography (ERT) and equivalent transport models, J. Hydrol., 267(3-4), 125-146.   DOI
9 Cho, I. K., Ha, M. J., and Yong, H. S., 2013, Effective data weighting and cross-model constraint in time-lapse inversion of resistivity monitoring data, J. Korea Inst. Mineral Mining Eng., 50(2), 264-277.
10 Kim, J. G., Park, S. G., Yi, M. J., and Kim, J. H., 2010, Tracing solute infiltration using a combined method of dye tracer test and electrical resistivity tomography in an undisturbed forest soil profile, Hydrol. Process., 24(21), 2977-2982.   DOI
11 Kim, K. J., and Cho, I. K., 2011, Time-lapse inversion of 2D resistivity monitoring data with spatially varying cross-model constraint, J. Appl. Geophys., 72(2-3), 114-122.   DOI
12 Kim, J. H., Yi, M. J., Park, S. G., and Kim, J. G., 2009, 4-D inversion of DC resistivity monitoring data acquired over a dynamically changing earth model, J. Appl. Geophys., 68(4), 522-532.   DOI
13 Kim, J. H., Supper, R., Tsourlos, P., and Yi, M. J., 2013, Fourdimensional inversion of resistivity monitoring data through Lp norm minimizations, Geophys. J. Int., 195(3), 1640-1656.   DOI
14 Miller, C. R., Routh, P. S., Brosten, T. R., and McNamara, J. P., 2008, Application of time-lapse ERT imaging to watershed characterization, Geophysics, 73(3), G7-G17.   DOI
15 LaBrecque, D. J., and Yang, X., 2001, Difference inversion of ERT data, A fast inversion method for 3-D in-situ monitoring, J. Environ. and Engin. Geophys., 6(2), 83-89.   DOI
16 Loke, M. H., Dahlin, T., and Rucker, D. F., 2014, Smoothnessconstrained time-lapse inversion of data from 3D resistivity surveys, Near Surf. Geophys., 12(1), 5-24.
17 Loke, M. H., 1999. Time-lapse resistivity imaging inversion, Proceedings of the 5th Meeting of the Environmental and Engineering European Section, Em1.
18 Oldenborger, G. A., Knoll, M. D., Routh, P. S., and LaBrecque, D. J., 2007, Time-lapse ERT monitoring of an injection/ withdrawal experiment in a shallow unconfined aquifer, Geophysics, 72(4), F177-F187.   DOI
19 Park, S. G., Kim, J. H., and Seo, G. W., 2005, Application of electrical resistivity monitoring technique to maintenance of embankments, Geophys. and Geophys. Explor., 8(2), 177-183 (in Korean with English abstract).
20 Slater, L., Binley, A. M., Daily, W., and Johnson, R., 2000, Cross-hole electrical imaging of a controlled saline tracer injection, J. Appl. Geophys., 44(2-3), 85-102.   DOI
21 Yaramanci, Y., 2000, Geoelectric exploration and monitoring in rock salt for the safety assessment of underground waste disposal sites, J. Appl. Geophys., 44(2-3), 181-196.   DOI
22 Yi, M. J., Kim, J. H., and Chung, S. H., 2003, Enhancing the resolving power of least-squares inversion with active constraint balancing, Geophysics, 68(3), 931-941.   DOI