• Title/Summary/Keyword: Smoothing

Search Result 1,541, Processing Time 0.031 seconds

Development of Predictive Smoothing Voter using Exponential Smoothing Method (지수 평활법을 이용한 Predictive Smoothing Voter 개발)

  • Kim, Man-Ho;Lim, Chang-Hwy;Lee, Suk;Lee, Kyung-Chang
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.6
    • /
    • pp.34-42
    • /
    • 2006
  • As many systems depend on electronics, concern for fault tolerance is growing rapidly. For example, a car with its steering controlled by electronics and no mechanical linkage from steering wheel to front tires(steer-by-wire) should be fault tolerant because a failure can come without any warning and its effect is devastating. In order to make system fault tolerant, there has been a body of research mainly from aerospace field. This paper presents the structure of predictive smoothing voter that can filter out most erroneous values and noise. In addition, several numerical simulation results are given where the predictive smoothing voter outperforms well-known average and median voters.

Aggregated Smoothing: Considering All Streams Simultaneously for Transmission of Variable-Bit-Rate Encoded Video Objects

  • Kang, Sooyong;Yeom, Heon Y.
    • Journal of Communications and Networks
    • /
    • v.5 no.3
    • /
    • pp.258-265
    • /
    • 2003
  • Transmission of continuous media streams has been a challenging problem of multimedia service. Lots of works have been done trying to figure out the best solution for this problem, and some works presented the optimal solution for transmitting the stored video using smoothing schemes applied to each individual stream. But those smoothing schemes considered only one stream, not the whole streams being serviced, to apply themselves, which could only achieve local optimum not the global optimum. Most of all, they did not exploit statistical multiplexing gain that can be obtained before smoothing. In this paper, we propose a new smoothing scheme that deals with not an individual stream but the whole streams being serviced simultaneously to achieve the optimal network bandwidth utilization and maximize the number of streams that can be serviced simultaneously. We formally proved that the proposed scheme not only provides deterministic QoS for each client but also maximizes number of clients that can be serviced simultaneously and hence achieves maximum utilization of transmission bandwidth.

Estimation of Smoothing Constant of Minimum Variance and its Application to Industrial Data

  • Takeyasu, Kazuhiro;Nagao, Kazuko
    • Industrial Engineering and Management Systems
    • /
    • v.7 no.1
    • /
    • pp.44-50
    • /
    • 2008
  • Focusing on the exponential smoothing method equivalent to (1, 1) order ARMA model equation, a new method of estimating smoothing constant using exponential smoothing method is proposed. This study goes beyond the usual method of arbitrarily selecting a smoothing constant. First, an estimation of the ARMA model parameter was made and then, the smoothing constants. The empirical example shows that the theoretical solution satisfies minimum variance of forecasting error. The new method was also applied to the stock market price of electrical machinery industry (6 major companies in Japan) and forecasting was accomplished. Comparing the results of the two methods, the new method appears to be better than the ARIMA model. The result of the new method is apparently good in 4 company data and is nearly the same in 2 company data. The example provided shows that the new method is much simpler to handle than ARIMA model. Therefore, the proposed method would be better in these general cases. The effectiveness of this method should be examined in various cases.

SMOOTHING APPROXIMATION TO l1 EXACT PENALTY FUNCTION FOR CONSTRAINED OPTIMIZATION PROBLEMS

  • BINH, NGUYEN THANH
    • Journal of applied mathematics & informatics
    • /
    • v.33 no.3_4
    • /
    • pp.387-399
    • /
    • 2015
  • In this paper, a new smoothing approximation to the l1 exact penalty function for constrained optimization problems (COP) is presented. It is shown that an optimal solution to the smoothing penalty optimization problem is an approximate optimal solution to the original optimization problem. Based on the smoothing penalty function, an algorithm is presented to solve COP, with its convergence under some conditions proved. Numerical examples illustrate that this algorithm is efficient in solving COP.

ANALYSIS OF A SMOOTHING METHOD FOR SYMMETRIC CONIC LINEAR PROGRAMMING

  • Liu Yong-Jin;Zhang Li-Wei;Wang Yin-He
    • Journal of applied mathematics & informatics
    • /
    • v.22 no.1_2
    • /
    • pp.133-148
    • /
    • 2006
  • This paper proposes a smoothing method for symmetric conic linear programming (SCLP). We first characterize the central path conditions for SCLP problems with the help of Chen-Harker-Kanzow-Smale smoothing function. A smoothing-type algorithm is constructed based on this characterization and the global convergence and locally quadratic convergence for the proposed algorithm are demonstrated.

An Edge-Based Algorithm for Discontinuity Adaptive Image Smoothing (에지기반의 불연속 경계적응 영상 평활화 알고리즘)

  • 강동중;권인소
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.273-273
    • /
    • 2000
  • We present a new scheme to increase the performance of edge-preserving image smoothing from the parameter tuning of a Markov random field (MRF) function. The method is based on automatic control of the image smoothing-strength in MRF model ing in which an introduced parameter function is based on control of enforcing power of a discontinuity-adaptive Markov function and edge magnitude resulted from discontinuities of image intensity. Without any binary decision for the edge magnitude, adaptive control of the enforcing power with the full edge magnitude could improve the performance of discontinuity-preserving image smoothing.

  • PDF

SMOOTHING ANALYSIS IN MULTIGRID METHOD FOR THE LINEAR ELASTICITY FOR MIXED FORMULATION

  • KANG, KAB SEOK
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.5 no.1
    • /
    • pp.11-24
    • /
    • 2001
  • We introduce an assumption about smoothing operator for mixed formulations and show that convergence of Multigrid method for the mixed finite element formulation for the Linear Elasticity. And we show that Richardson and Kaczmarz smoothing satisfy this assumption.

  • PDF

Planar Curve Smoothing with Individual Weighted Averaging (개별적 가중치 평균을 이용한 2차원 곡선의 스무딩)

  • Lyu, Sungpil
    • Journal of KIISE
    • /
    • v.44 no.11
    • /
    • pp.1194-1208
    • /
    • 2017
  • A traditional average smoothing method is designed for smoothing out noise, which, however, unintentionally results in smooth corner points on the curvature accompanied with a shrinkage of curves. In this paper, we propose a novel curve smoothing method via polygonal approximation of the input curve. The proposed method determines the smoothing weight for each point of the input curve based on the angle and approximation error between the approximated polygon and the input curve. The weight constrains a displacement of the point after smoothing not to significantly exceed the average noise error of the region. In the experiment, we observed that the resulting smoothed curve is close to the original curve since the point moves toward the average position of the noise after smoothing. As an application to digital cartography, for the same amount of smoothing, the proposed method yields a less area reduction even on small curve segments than the existing smoothing methods.

A Finite Memory Structure Smoothing Filter and Its Equivalent Relationship with Existing Filters (유한기억구조 스무딩 필터와 기존 필터와의 등가 관계)

  • Kim, Min Hui;Kim, Pyung Soo
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.10 no.2
    • /
    • pp.53-58
    • /
    • 2021
  • In this paper, an alternative finite memory structure(FMS) smoothing filter is developed for discrete-time state-space model with a control input. To obtain the FMS smoothing filter, unbiasedness will be required beforehand in addition to a performance criteria of minimum variance. The FMS smoothing filter is obtained by directly solving an optimization problem with the unbiasedness constraint using only finite measurements and inputs on the most recent window. The proposed FMS smoothing filter is shown to have intrinsic good properties such as deadbeat and time-invariance. In addition, the proposed FMS smoothing filter is shown to be equivalent to existing FMS filters according to the delay length between the measurement and the availability of its estimate. Finally, to verify intrinsic robustness of the proposed FMS smoothing filter, computer simulations are performed for a temporary model uncertainty. Simulation results show that the proposed FMS smoothing filter can be better than the standard FMS filter and Kalman filter.

Smoothing Effect in X-ray Microtomogram and Its Influence on the Physical Property Estimation of Rocks (X선 토모그램의 Smoothing 효과가 암석의 물성 예측에 미치는 영향 분석)

  • Lee, Min-Hui;Keehm, Young-Seuk
    • Geophysics and Geophysical Exploration
    • /
    • v.12 no.4
    • /
    • pp.347-354
    • /
    • 2009
  • Physical properties of rocks are strongly dependant on details of pore micro-structures, which can be used for quantifying relations between physical properties of rocks through pore-scale simulation techniques. Recently, high-resolution scan techniques, such as X-ray microtomography and high performance computers make it possible to calculate permeability from pore micro-structures of rocks. We try to extend this simulation methodology to velocity and electrical conductivity. However, the smoothing effect during tomographic inversion creates artifacts in pore micro-structures and causes inaccurate property estimation. To mitigate this artifact, we tried to use sharpening filter and neural network classification techniques. Both methods gave noticeable improvement in pore structure imaging and accurate estimation of permeability and electrical conductivity, which implies that our method effectively removes the smoothing effect in pore structures. However, the calculated velocities showed only incremental improvement. By comparison between thin section images and tomogram, we found that our resolution is not high enough, and it is mainly responsible for the inaccuracy in velocity despite the successful removal of the smoothing effect. In conclusion, our methods can be very useful for pore-scale modeling, since it can create accurate pore structure without the smoothing effect. For accurate velocity estimation, the resolution of pore structure should be at least three times higher than that for permeability simulation.