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SMOOTHING APPROXIMATION TO l1 EXACT PENALTY

FUNCTION FOR CONSTRAINED OPTIMIZATION

PROBLEMS†

NGUYEN THANH BINH

Abstract. In this paper, a new smoothing approximation to the l1 exact

penalty function for constrained optimization problems (COP) is presented.
It is shown that an optimal solution to the smoothing penalty optimization
problem is an approximate optimal solution to the original optimization
problem. Based on the smoothing penalty function, an algorithm is pre-

sented to solve COP, with its convergence under some conditions proved.
Numerical examples illustrate that this algorithm is efficient in solving
COP.
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1. Introduction

Consider the following COP:

(P) min f(x)

s.t. gi(x) ≤ 0, i = 1, 2, . . . ,m,

where f, gi : Rn → R, i ∈ I = {1, 2, . . . ,m} are continuously differentiable
functions and X0 = {x ∈ Rn | gi(x) ≤ 0, i = 1, 2, . . . ,m} is the feasible set to
(P).

To solve (P), many exact penalty function methods have been introduced in
literatures, see, [1, 3, 4, 5, 7, 13, 25]. In 1967, Zangwill [25] first the classical l1
exact penalty function as follows:

F1(x, ρ) = f(x) + ρ

m∑
i=1

max{gi(x), 0}, (1)
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where ρ > 0 is a penalty parameter. Obviously, it is not a smooth function. In
many studies, another popular penalty function for (P) is defined as:

F2(x, ρ) = f(x) + ρ
m∑
i=1

max{gi(x), 0}2, (2)

which is called l2 penalty function. Although F2(x, ρ) is continuously differen-
tiable, it is not an exact penalty function.

In recent years, the lower order penalty function

F k(x, ρ) = f(x) + ρ
m∑
i=1

[max{gi(x), 0}]k, k ∈ (0, 1) (3)

has been introduced and investigated in [10, 11, 18]. Recently, Huang and Yang
[6, 23] and Rubinov et al. [14, 15, 16] discussed a nonlinear Lagrangian penalty
function,

Fk(x, ρ) =

[
f(x)k + ρ

m∑
i=1

max{gi(x), 0}k
] 1

k

(4)

for some k ∈ (0,+∞).
It is noted that two penalty functions (3) and (4) (0 < k ≤ 1) are exact, but

not smooth, which makes certain efficient methods (e.g., Newton methods) not
applicable. Therefore, the smoothing methods for these exact penalty functions
(1), (3) or (4) (0 < k ≤ 1) attracts much attention, see, [2, 8, 9, 10, 11, 12,
18, 19, 20, 21, 22, 24, 26]. Chen et al. [2] introduced a smooth function to
approximate the classical l1 penalty function by integrating the sigmoid function
1/(1 + e−αt). Lian [8] and Wu et al. [19] proposed a smoothing approximation
to l1 exact penalty function for inequality constrained optimization. Pinar et
al. [12] also proposed a smoothing approximation to l1 exact penalty function
and an ϵ-optimal minimum can be obtained by solving the smoothed penalty
problem. Xu et al. [21] discussed a second-order differentiability smoothing to
the classical l1 exact penalty function for constrained optimization problems.

In this paper, we aim to smooth l1 exact penalty function of the form (1).
First, we define a function pϵ(t) as follows:

pϵ(t) =


0 if t < 0,
t2

4ϵ
if 0 ≤ t < ϵ,

t+
1

2
ϵe−

t
ϵ+1 − 5ϵ

4
if t ≥ ϵ.

It is easy to prove that pϵ(t) is continuously differentiable on R. Using pϵ(t)
as the smoothing function, a new smoothing approximation to l1 exact penalty
function is obtained, based on the smoothed penalty function obtained thereafter
an algorithm for solving COP is given in this paper.
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The rest of this paper is organized as follows. In Section 2, we introduce a
smoothing function for the classical l1 exact penalty function and some funda-
mental properties of the smoothing function. In Section 3, the algorithm based
on the smoothed penalty function is proposed and its global convergence is pre-
sented, with some numerical examples given. Finally, conclusions are given in
Section 4.

2. A smoothing penalty function

Let p(t) = max{t, 0}. Then, the penalty function (1) is turned into

F (x, ρ) = f(x) + ρ

m∑
i=1

p (gi(x)) , (5)

where ρ > 0. The corresponding penalty optimization problem to F (x, ρ) is
defined as

(Pρ) min F (x, ρ), s.t. x ∈ Rn.

In order to p(t), we define function pϵ(t) : R
1 → R1 as

pϵ(t) =


0 if t < 0,
t2

4ϵ
if 0 ≤ t < ϵ,

t+
1

2
ϵe−

t
ϵ+1 − 5ϵ

4
if t ≥ ϵ,

where ϵ > 0 is a smoothing parameter.

Remark 2.1. Obviously, pϵ(t) has the following attractive properties: pϵ(t) is
continuously differentiable on R and lim

ϵ→0
pϵ(t) = p(t).

Figure 1 shows the behavior of p(t) (represented by the real line), p0.5(t)
(represented by the dot line), p0.1(t) (represented by the broken and dot line),
p0.001(t) (represented by the broken line).

Consider the penalty function for (P) given by

Fϵ(x, ρ) = f(x) + ρ

m∑
i=1

pϵ (gi(x)) . (6)

Clearly, Fϵ(x, ρ) is continuously differentiable on Rn. Applying (6), the following
penalty problem for (P) is obtained

(NPρ,ϵ) min Fϵ(x, ρ), s.t. x ∈ Rn.

Now, the relationship between (Pρ) and (NPρ,ϵ) is studied.

Lemma 2.1. For any given x ∈ Rn, ϵ > 0 and ρ > 0, we have

0 ≤ F (x, ρ)− Fϵ(x, ρ) ≤
5mρϵ

4
. (7)
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Figure 1. The behavior of p(t) and pϵ(t).

Proof. For x ∈ Rn and i ∈ I, by the definition of pϵ(t), we have

p (gi(x))− pϵ (gi(x)) =


0 if gi(x) < 0,

gi(x)−
gi(x)

2

4ϵ
if 0 ≤ gi(x) < ϵ,

5ϵ

4
− 1

2
ϵe−

gi(x)

ϵ +1 if gi(x) ≥ ϵ.

That is,

0 ≤ p (gi(x))− pϵ (gi(x)) ≤
5ϵ

4
, i = 1, 2, . . . ,m.

Thus,

0 ≤
m∑
i=1

p (gi(x))−
m∑
i=1

pϵ (gi(x)) ≤
5mϵ

4
,

which implies

0 ≤ ρ
m∑
i=1

p (gi(x))− ρ
m∑
i=1

pϵ (gi(x)) ≤
5mρϵ

4
.

Therefore,

0 ≤

{
f(x) + ρ

m∑
i=1

p (gi(x))

}
−

{
f(x) + ρ

m∑
i=1

pϵ (gi(x))

}
≤ 5mρϵ

4
,

that is,

0 ≤ F (x, ρ)− Fϵ(x, ρ) ≤
5mρϵ

4
.
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The proof completes. �

A direct result of Lemma 2.1 is given as follows.

Corollary 2.2. Let {ϵj} → 0 be a sequence of positive numbers and assume xj

is a solution to (NPρ,ϵ) for some given ρ > 0. Let x′ be an accumulation point
of the sequence {xj}. Then x′ is an optimal solution to (Pρ).

Definition 2.3. For ϵ > 0, a point xϵ ∈ Rn is called ϵ-feasible solution to (P) if
gi(xϵ) ≤ ϵ, ∀i ∈ I.

Definition 2.4. For ϵ > 0, a point xϵ ∈ X0 is called ϵ-approximate optimal
solution to (P) if

|f∗ − f(xϵ)| ≤ ϵ,

where f∗ is the optimal objective value of (P).

Theorem 2.5. Let x∗ be an optimal solution of problem (Pρ) and x′ be an
optimal solution to (NPρ,ϵ) for some ρ > 0 and ϵ > 0. Then,

0 ≤ F (x∗, ρ)− Fϵ(x
′, ρ) ≤ 5mρϵ

4
. (8)

Proof. From Lemma 2.1, for ρ > 0, we have that

0 ≤ F (x∗, ρ)− Fϵ(x
∗, ρ) ≤ 5mρϵ

4
,

0 ≤ F (x′, ρ)− Fϵ(x
′, ρ) ≤ 5mρϵ

4
.

Under the assumption that x∗ is an optimal solution to (Pρ) and x′ is an optimal
solution to (NPρ,ϵ), we get

F (x∗, ρ) ≤ F (x′, ρ),

Fϵ(x
′, ρ) ≤ Fϵ(x

∗, ρ).

Therefore, we obtain that

0 ≤ F (x∗, ρ)− Fϵ(x
∗, ρ) ≤ F (x∗, ρ)− Fϵ(x

′, ρ)

≤ F (x′, ρ)− Fϵ(x
′, ρ) ≤ 5mρϵ

4
.

That is,

0 ≤ F (x∗, ρ)− Fϵ(x
′, ρ) ≤ 5mρϵ

4
.

This completes the proof. �

Theorem 2.5 show that an approximate solution to (NPρ,ϵ) is also an approx-
imate solution to (Pρ) when the error ϵ is sufficiently small.

Lemma 2.6 ([20]). Suppose that x∗ is an optimal solution to (Pρ). If x∗ is
feasible to (P), then it is an optimal solution to (P).
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Theorem 2.7. Suppose that x∗ satisfies the conditions in Lemma 2.6 and x′ be
an optimal solution to (NPρ,ϵ) for some ρ > 0 and ϵ > 0. If x′ is ϵ-feasible to
(P). Then,

0 ≤ f(x∗)− f(x′) ≤ 3mρϵ

2
, (9)

that is, x′ is an approximate optimal solution to (P).

Proof. Since x′ is ϵ-feasible to (P), it follows that
m∑
i=1

pϵ (gi(x
′)) ≤ mϵ

4
.

As x∗ is a feasible solution to (P), we have
m∑
i=1

p (gi(x
∗)) = 0.

By Theorem 2.5, we get

0 ≤

{
f(x∗) + ρ

m∑
i=1

p (gi(x
∗))

}
−

{
f(x′) + ρ

m∑
i=1

pϵ (gi(x
′))

}
≤ 5mρϵ

4
.

Thus,

ρ
m∑
i=1

pϵ (gi(x
′)) ≤ f(x∗)− f(x′) ≤ ρ

m∑
i=1

pϵ (gi(x
′)) +

5mρϵ

4
.

That is,

0 ≤ f(x∗)− f(x′) ≤ 3mρϵ

2
.

By Lemma 2.6, x∗ is actually an optimal solution to (P). Thus x′ is an approx-
imate optimal solution to (P). This completes the proof. �

By Theorem 2.7, an optimal solution to (NPρ,ϵ) is an approximate optimal
solution to (P) if it is ϵ-feasible to (P). Therefore, we can obtain an approximately
optimal solution to (P) by solving (NPρ,ϵ) under some mild conditions.

3. Algorithm and numerical examples

In this section, using the smoothed penalty function Fϵ(x, ρ), we propose an
algorithm to solve COP, defined as Algorithm 3.1.

Algorithm 3.1
Step 1: Choose x0, ϵ > 0, ϵ0 > 0, ρ0 > 0, 0 < η < 1 and N > 1, let j = 0 and

go to Step 2.
Step 2: Use xj as the starting point to solve

(NPρj ,ϵj ) min
x∈Rn

Fϵj (x, ρj) = f(x) + ρj

m∑
i=1

pϵj (gi(x)) .
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Let xj+1 be the optimal solution obtained (xj+1 is obtained by a quasi-
Newton method).

Step 3: If xj+1 is ϵ-feasible to (P), then stop and we have obtained an
approximate solution xj+1 of (P). Otherwise, let ρj+1 = Nρj , ϵj+1 = ηϵj
and j = j + 1, then go to Step 2.

Remark 3.1. In this Algorithm 3.1, as N > 1 and 0 < η < 1, the sequence
{ϵj} → 0 (j → +∞) and the sequence {ρj} → +∞ (j → +∞).

In practice, it is difficult to compute xj+1 ∈ arg min
x∈Rn

Fϵj (x, ρj). We generally

look for the local minimizer or stationary point of Fϵj (x, ρj) by computing xj+1

such that ∇Fϵj (x, ρj) = 0. For x ∈ Rn, we define

I0(x) = {i | gi(x) < 0, i ∈ I},
I+ϵ (x) = {i | gi(x) ≥ ϵ, i ∈ I},
I−ϵ (x) = {i | 0 ≤ gi(x) < ϵ, i ∈ I}.

Then, the following result is obtained.

Theorem 3.1. Assume that lim
∥x∥→+∞

f(x) = +∞. Let {xj} be the sequence

generated by Algorithm 3.1. Suppose that the sequence {Fϵj (x
j , ρj)} is bounded.

Then {xj} is bounded and any limit point x∗ of {xj} is feasible to (P), and
satisfies

λ∇f(x∗) +
∑
i∈I

µi∇gi(x
∗) = 0, (10)

where λ ≥ 0 and µi ≥ 0, i = 1, 2, . . . ,m.

Proof. First, we will prove that {xj} is bounded. Note that

Fϵj (x
j , ρj) = f(xj) + ρj

m∑
i=1

pϵj
(
gi(x

j)
)
, j = 0, 1, 2, . . . , (11)

and by the definition of pϵ(t), we have

m∑
i=1

pϵj
(
gi(x

j)
)
≥ 0. (12)

Suppose to the contrary that {xj} is unbounded. Without loss of generality, we
assume that ∥xj∥ → +∞ as j → +∞. Then, lim

j→+∞
f(xj) = +∞ and from (11)

and (12), we have

Fϵj (x
j , ρj) ≥ f(xj) → +∞, ρj > 0, j = 0, 1, 2, . . . ,

which results in a contradiction since the sequence {Fϵj (x
j , ρj)} is bounded.

Thus {xj} is bounded.
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We show next that any limit point x∗ of {xj} is feasible to (P). Without loss
of generality, we assume that lim

j→+∞
xj = x∗. Suppose that x∗ is not feasible to

(P). Then there exits some i ∈ I such that gi(x
∗) ≥ α > 0. Note that

Fϵj (x
j , ρj) = f(xj) + ρj

∑
i∈I+

ϵj
(xj)

(
gi(x

j) +
1

2
ϵje

− gi(x
j)

ϵj
+1 − 5ϵj

4

)

+ ρj
∑

i∈I−
ϵj

(xj)

gi(x
j)2

4ϵj
. (13)

If j → +∞, then for any sufficiently large j, the set {i | gi(xj) ≥ α} is not
empty. Because I is finite, then there exists an i0 ∈ I that satisfies gi0(x

j) ≥ α.
If j → +∞, ρj → +∞, ϵj → 0, it follows from (13) that Fϵj (x

j , ρj) → +∞,

which contradicts the assumption that {Fϵj (x
j , ρj)} is bounded. Therefore, x∗

is feasible to (P).
Finally, we show that (10) holds. By Step 2 in Algorithm 3.1, ∇Fϵj (x

j , ρj) =
0, that is

∇f(xj) + ρj
∑

i∈I+
ϵj

(xj)

(
1− 1

2
e
− gi(x

j)

ϵj
+1

)
∇gi(x

j)

+ ρj
∑

i∈I−
ϵj

(xj)

1

2ϵj
gi(x

j)∇gi(x
j) = 0. (14)

For j = 1, 2, . . . , let

γj = 1 +
∑

i∈I+
ϵj

(xj)

ρj

(
1− 1

2
e
− gi(x

j)

ϵj
+1

)
+

∑
i∈I−

ϵj
(xj)

ρj
2ϵj

gi(x
j). (15)

Then γj > 1. From (14), we have

1

γj
∇f(xj) +

∑
i∈I+

ϵj
(xj)

ρj

(
1− 1

2e
− gi(x

j)

ϵj
+1

)
γj

∇gi(x
j)

+
∑

i∈I−
ϵj

(xj)

ρjϵ
−1
j

2γj
gi(x

j)∇gi(x
j) = 0. (16)

Let

λj =
1

γj
,

µj
i =

ρj

(
1− 1

2e
− gi(x

j)

ϵj
+1

)
γj

, i ∈ I+ϵj (x
j),
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µj
i =

ρjϵ
−1
j

2γj
gi(x

j), i ∈ I−ϵj (x
j),

µj
i = 0, i ∈ I \

(
I+ϵj (x

j) ∪ I−ϵj (x
j)
)
.

Then we have

λj +
∑
i∈I

µj
i = 1, ∀j, (17)

µj
i ≥ 0, i ∈ I, ∀j.

When j → ∞, we have that λj → λ ≥ 0, µj
i → µi ≥ 0, ∀i ∈ I. By (16) and

(17), as j → +∞, we have

λ∇f(x∗) +
∑
i∈I

µi∇gi(x
∗) = 0,

λ+
∑
i∈I

µi = 1.

For i ∈ I0(x∗), as j → +∞, we get µj
i → 0. Therefore, µi = 0, ∀i ∈ I0(x∗). So,

(10) holds, and this completes the proof. �

Theorem 3.1 points out that the sequence {xj} generated by Algorithm 3.1
may converge to a K-T point to (P) under some conditions.

Now, we will solve some COP with Algorithm 3.1 on MATLAB. In each
example, we let ϵ = 10−6, then it is expected to get an ϵ-solution to (P) with Al-
gorithm 3.1 on MATLAB. Numerical results show that Algorithm 3.1 yield some
approximate solutions that have a better objective function value in comparison
with some other algorithms.

Example 3.2. Consider the example in [8],

(COP1) min f(x) = x2
1 + x2

2 + 2x2
3 + x2

4 − 5x1 − 5x2 − 21x3 + 7x4

s.t. g1(x) = 2x2
1 + x2

2 + x2
3 + 2x1 + x2 + x4 − 5 ≤ 0,

g2(x) = x2
1 + x2

2 + x2
3 + x2

4 + x1 − x2 + x3 − x4 − 8 ≤ 0,

g3(x) = x2
1 + 2x2

2 + x2
3 + 2x2

4 − x1 − x4 − 10 ≤ 0.

Let x0 = (0, 0, 0, 0), ρ0 = 4, N = 10, ϵ0 = 0.01, η = 0.05 and ϵ = 10−6.
Numerical results of Algorithm 3.1 for solving (COP1) are given in Table 1.

Therefore, we get an approximate solution

x3 = (0.170768, 0.827977, 2.011779,−0.960639)

at the 3’th iteration. One can easily check that x3 is a feasible solution since the
constraints of (COP1) at x3 are as follows:

g1(x
3) =2 ∗ 0.1707682 + 0.8279772 + 2.0117792 + 2 ∗ 0.170768

+0.827977− 0.960639− 5 = −0.000001922981999,
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Table 1. Numerical results of Algorithm 3.1 with x0 = (0, 0, 0, 0), ρ0 =
4, N = 10

j ρj ϵj f(xj) g1(xj) g2(xj) g3(xj) xj

1 4 0.01 -44.256310 0.003740 0.009916 -1.872051 (0.169769,0.835551,

2.009753,-0.966244)

2 40 0.0005 -44.233949 0.000019 0.000050 -1.883070 (0.169561,0.835531,

2.008640,-0.964883)

3 400 0.000025 -44.233515 -0.000002 -0.000001 -1.916964 (0.170768,0.827977,

2.011779,-0.960639)

g2(x
3) =0.1707682 + 0.8279772 + 2.0117792 + (−0.960639)2 + 0.170768

−0.827977 + 2.011779 + 0.960639− 8 = −0.000001344484998,

g3(x
3) =0.1707682 + 2 ∗ 0.8279772 + 2.0117792 + 2 ∗ (−0.960639)2

−0.170768 + 0.960639− 10 = −1.916966143634999.

The objective function value is given by f(x3) = −44.233515. The solution
we obtained is slightly better than the solution obtained in the 4’th iteration by
method in [8] (the objective function value f(x∗) = −44.23040) for this example.

Now we change the initial parameters. Let x0 = (0, 0, 0, 0), ρ0 = 8, N =
6, ϵ0 = 0.01, η = 0.03 and ϵ = 10−6. Numerical results of Algorithm 3.1
for solving (COP1) are given in Table 2. Further, with the same parameters
ρ0, N, ϵ0, η as above, we change the starting point to x0 = (8, 8, 8, 8). New
numerical results are given in Table 3.

It is easy to see from Tables 2 and 3 that the convergence of Algorithm 3.1 is
the same and the objective function values are almost the same. That is to say,
the efficiency of Algorithm 3.1 does not completely depend on how to choose a
starting point in this example.

Note: j is the number of iteration in the Algorithm I.
ρj is constrain penalty parameter at the j′th iteration.
xj is a solution at the j′th iteration in the Algorithm I.
f(xj) is an objective value at xj .
gi(x

j) (i = 1, . . . ,m) is a constrain value at xj .

Example 3.3. Consider the example in [19],

(COP2) min f(x) = −2x1 − 6x2 + x2
1 − 2x1x2 + 2x2

2

s.t. x1 + x2 ≤ 2,

− x1 + 2x2 ≤ 2,

x1, x2 ≥ 0.

Let

g1(x) = x1 + x2 − 2, g2(x) = −x1 + 2x2 − 2,
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Table 2. Numerical results of Algorithm 3.1 with x0 = (0, 0, 0, 0), ρ0 =
8, N = 6

j ρj ϵj f(xj) g1(xj) g2(xj) g3(xj) xj

1 8 0.01 -44.245082 0.001869 0.004961 -1.877585 (0.169665,0.835541,

2.009194,-0.965561)

2 48 0.0003 -44.233893 0.000009 0.000025 -1.883098 (0.169561,0.835531,

2.008637,-0.964880)

3 288 0.000009 -44.232243 -0.000052 -0.000174 -1.921571 (0.162363,0.825936,

2.017343,-0.955283)

Table 3. Numerical results of Algorithm 3.1 with x0 = (8, 8, 8, 8), ρ0 =

8, N = 6

j ρj ϵj f(xj) g1(xj) g2(xj) g3(xj) xj

1 8 0.01 -44.245082 0.001869 0.004961 -1.877585 (0.169665,0.835541,

2.009194,-0.965561)

2 48 0.0003 -44.233893 0.000009 0.000025 -1.883098 (0.169561,0.835531,

2.008637,-0.964880)

3 288 0.000009 -44.233355 -0.000113 -0.000079 -1.900244 (0.166329,0.831255,

2.012529,-0.960615)

g3(x) = −x1, g4(x) = −x2.

Thus problem (COP2) is equivalent to the following problem:

(COP2’) min f(x) = −2x1 − 6x2 + x2
1 − 2x1x2 + 2x2

2

s.t. g1(x) = x1 + x2 − 2 ≤ 0,

g2(x) = −x1 + 2x2 − 2 ≤ 0,

g3(x) = −x1 ≤ 0,

g4(x) = −x2 ≤ 0.

Let x0 = (1, 1), ρ0 = 8, N = 10, ϵ0 = 0.5, η = 0.01 and ϵ = 10−6. Numerical
results of Algorithm 3.1 for solving (COP2’) are given in Table 4.

By Table 4, an approximate optimal solution to (COP2’) is obtained at the
3’th iteration, that is x∗ = (0.800000, 1.200000) with corresponding objective
function value f(x∗) = −7.200000. The solution we obtained is similar with the
solution obtained in the 4’th iteration by method in [19] (the objective function
value f(x∗) = −7.2000) for this example.

4. Conclusion

This paper has presented a smoothing approximation to the l1 exact penalty
function and an algorithm based on this smoothed penalty problem. It is shown
that the optimal solution to the (NPρ,ϵ) is an approximate optimal solution



398 Nguyen Thanh Binh

Table 4. Numerical results of Algorithm 3.1 with x0 = (1, 1), ρ0 =
8, N = 10

j ρj ϵj f(xj) g1(xj) g2(xj) xj

1 8 0.5 -8.111111 0.333333 -0.333333 (1.000000,1.333333)

2 80 0.005 -7.200980 0.000350 -0.399930 (0.800210,1.200140)

3 800 0.00005 -7.200000 0.000000 -0.400000 (0.800000,1.200000)

to the original optimization problem under some mild conditions. Numerical
results show that the algorithm proposed here is efficient in solving some COP.
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