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SMOOTHING ANALYSIS IN MULTIGRID METHOD FOR THE
LINEAR ELASTICITY FOR MIXED FORMULATION

KAB SEOK KANG

Abstract. We introduce an assumption about smoothing operator for mixed formu-
lations and show that convergence of Multigrid method for the mixed finite element
formulation for the Linear Elasticity. And we show that Richardson and Kaczmarz
smoothing satisfy this assumption.

1. Introduction and Preliminary

We consider Multigrid method for the pure displacement and pure traction problems
in planar linear elasticity by using mixed formulation. The resulting algebraic linear
operators by discretization of mixed formulation for the linear elasticity are not positive
definite but nonsingular. So, we cannot use the Jacobi and Gauss-Seidel smoother but
can use Richardson type smoother and Kaczmarz smoother for solving algebraic linear
system.

Richardson type smoother is a very simple and convergence of Multigrid method with
this was easily shown([1],[2],[10],[11], [12], [13],[14], [18]), but Multigrid method with
this has a slow convergence. For the positive definite problem, authors show that the
convergence of Multigrid method with various smoothing by using some assumptions
concerning smoothing and show that Jacobi smoothing and Gauss-Seidel smoothing
satisfy these assumptions([3], [4], [5], [6], [7], [8], [9], [19]). In [16], authors introduce
weaker assumptions and show that convergence of Multigrid method. In this paper,
we introduce an assumption concerning smoother and show that Multigrid algorithm
converge under this assumption and Richardson and Kaczmarz smoother satisfy this
assumption.

From here and after, a boldfaces is used to denote vector-valued functions, operators,
and their associated spaces. Upper characters and Greece characters are used for
matrix-valued functions and operators. We define

gradp =
(

∂p/∂x1

∂p/∂x2

)
, curlp =

(
∂p/∂x2

−∂p/∂x1

)
,
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divτ =
(

∂τ11/∂x1 + ∂τ12/∂x2

∂τ21/∂x1 + ∂τ22/∂x2

)
,

divv = ∂v1/∂x1 + ∂v2/∂x2, rotv = −∂v1/∂x2 + ∂v2/∂x1,

Gradv =
(

∂v1/∂x1 ∂v1/∂x2

∂v2/∂x1 ∂v2/∂x2

)
, Curlv =

(
∂v1/∂x2 −∂v1/∂x1

∂v2/∂x2 −∂v2/∂x1

)
.

We also define

δ =
(

1 0
0 1

)
, χ =

(
0 −1
1 0

)
, and tr(τ) = τ : δ,

where

τ : δ =
2∑

i=1

2∑

j=1

δijτij .

Finally, let

ε(v) =
1
2
[Gradv + (Gradv)t] = Gradv − 1

2
(rotv)χ.

Let Ω be a bounded convex polygonal domain in R2. u denotes the displacement, f
the body force, g the boundary traction, µ > 0, λ > 0 the Lamé constants, and n
is the outer normal. We assume that the Lamé constants (µ, λ) belong to the range
[µ1, µ2]× [λ0,∞), where µ1, µ2, λ0 are fixed positive constants.

Here we define two elasticity problems and give the well known properties concerning
solution of the problems. The pure displacement boundary value problem for planar
linear elasticity is given by

−div{2µε(u) + λtr(ε(u))δ} = f , in Ω,
u = 0, on ∂Ω.

(1.1)

It is well known ([13]) that, for f ∈ L2(Ω), equation (1.1) has a unique solution u ∈
H2(Ω) ∩H1

0(Ω). Moreover, there exists a positive constant C independent of µ and λ
such that

‖u‖H2(Ω) + λ‖divu‖H1(Ω) ≤ C‖f‖L2(Ω).

The pure traction boundary value problem for planar linear elasticity is given by

−div {2µε(u) + λtr (ε(u)) δ} = f , in Ω,

(2µε(u) + λtr (ε(u)) δ)n = g, on ∂Ω.
(1.2)

Since the domain Ω is a polygon which has corners, the boundary conditions (1.2)
must be carefully handled. We shall denote by Si, 1 ≤ i ≤ n, the vertices of ∂Ω; by
Γi, 1 ≤ i ≤ n, be open line segment joining Si to Si+1; by ti the positively oriented
unit tangent along Γi; and by ni the unit outer normal along Γi. Let p ∈ H1/2(Γi) and
q ∈ H1/2(Γi+1). We say that p ≡ q at Si+1 if

∫ t

0
|q(s)− p(−s)|2 ds

s
< ∞,



SMOOTHING ANALYSIS IN MULTIGRID METHOD 13

where s is the oriented arc length measured from Si+1 and t is a positive number less
than min{|Γi| : 1 ≤ i ≤ n}.

We are able to write equation (1.2) more precisely as

−div {2µε(u) + λtr (ε(u)) δ} = f , in Ω,

(2µε(u) + λtr (ε(u)) δ)n|Γi = g, 1 ≤ i ≤ n,
(1.3)

where f ∈ L2(Ω), and gi ∈ H1/2(Γi) satisfy

gi · ni+1 ≡ gi+1 · ni at Si+1 for 1 ≤ i ≤ n.

In order to exist a solution of (1.3), f and gi must satisfy the compatibility condition
∫

Ω
f · vdxdy +

n∑

i=1

∫

Γi

gi · nids = 0, ∀v ∈ RM,

where RM, the space of rigid motions, is defined by

RM := {v : v = (a + bx, c− by), a, b, c,∈ R} .

When this compatibility condition holds, the pure traction boundary value problem
(1.3) has a unique solution ([14],[15]) u ∈ H2

⊥(Ω) where

Hk
⊥(Ω) :=

{
u ∈ Hk(Ω) :

∫

Ω
u · vdxdy = 0, ∀v ∈ RM

}
.

Moreover, there exists a positive constant C independent of µ and λ such that

‖u‖H2(Ω) + λ‖divu‖H1(Ω) ≤ C‖f‖L2(Ω).

Here, Hk(Ω), k ≥ 0, denotes the usual L2-based Sobolev spaces of vector-valued func-
tions. The space L2

⊥(Ω) is interpreted as H0
⊥(Ω). Note that |u|Hk(Ω) becomes a norm

on Hk
⊥(Ω).

In Section 2, we consider the mixed formulations of (1.1) and (1.3) and its finite
discretizations. In Section 3, we consider Multigrid methods and its convergence anal-
ysis with smoothing assumption. In Section 4, we show that simple Richardson type
smoother and Kaczmarz smoother satisfy the above assumption concerning smoother.
We give numerical experiment of (1.1) in Section 5.

2. Mixed Formulations and its Finite Discretizations

First, we consider the pure displacement boundary value problem. The boundary
value problem (1.1) can be written as

−µ∆u− (µ + λ)grad(divu) = f , in Ω,
u = 0, on ∂Ω.

Hence, we have the following weak formulation:
Find u ∈ H1

0(Ω) such that

(2.1) µ

∫

Ω
Gradu : Gradvdx + (µ + λ)

∫

Ω
(divu)(divv)dx =

∫

Ω
f · vdx,
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for all v ∈ H1
0(Ω). Let γ = µ+λ

µ and p = γdivu. It is clear that (2.1) is equivalent to
the following mixed formulation:

Find (u, p) ∈ H1
0(Ω)× L2(Ω) such that

∫

Ω
Gradu : Gradvdx +

∫

Ω
pdivvdx =

1
µ

∫

Ω
f · vdx, ∀v ∈ H1

0(Ω),
∫

Ω
(divu)q − 1

γ

∫

Ω
pqdx = 0, q ∈ L2(Ω).

(2.2)

Equation (2.2) can be written concisely as

(2.3) B((u, p), (v, q)) =
1
µ

∫

Ω
f · vdx, ∀(v, q) ∈ H1

0(Ω)× L2(Ω),

where the symmetric bilinear form B(·, ·) : H1
0(Ω)× L2(Ω) → R is defined by

B((v1, q1), (v2, q2))

:=
∫

Ω

{
Gradv1 : Gradv2 + q1(divv2) + (divv1)q2 − 1

γ
q1q2

}
dx.

It is clear from the definition of B that
|B((v1, q1),(v2, q2))|

≤
√

2(|v1|H1(Ω) + ‖q1‖L2(Ω))(|v2|H1(Ω) + ‖q2‖L2(Ω)).

Let Tk be a sequence of triangulations of Ω, where Tk+1 is obtained by connecting
the midpoints of the triangles in Tk. We will denote max{diamT : T ∈ Tk} by hk. Let

Qk = {q : q ∈ L2(Ω) and q|T is a constant for all T ∈ Tk}.
The nonconforming finite element spaces Vk are defined as follows.

Vk = {v :v ∈ L2(Ω),v|T is linear for all T ∈ Tk,
v is continuous at the midpoints
of interelement boundaries

and v = 0 at the midpoints of edges along ∂Ω.}.
The discretized problem for (2.3) is : Find (uk, pk) ∈ Vk ×Qk such that

(2.4) Bk((uk, pk), (v, q)) =
1
µ

∫

Ω
f · vdx, ∀(v, q) ∈ Vk ×Qk.

Here the symmetric bilinear form Bk(·, ·) : (H1
0(Ω) + Vk)×Qk → R is defined by

Bk((v1, q1), (v2, q2))

:=
∫

Ω

{
Gradkv1 : Gradkv2 + q1(divkv2) + (divkv1)q2 − 1

γ
q1q2

}
dx,

where
(Gradkv)|T = Grad(v|T ), (divkv)|T = div(v|T ), ∀T ∈ Tk.
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In [13], auther show that (2.4) is uniquely solvable and derive the following dis-
cretization error estimate:

‖u− uk‖L2(Ω) + hk

(‖u− uk‖k + ‖p− pk‖L2(Ω)

) ≤ Ch2
k‖f‖L2(Ω),

where the nonconforming energy norm ‖ · ‖k on H1
0(Ω) + Vk is defined by

‖v‖k := ‖Gradkv‖L2(Ω).

Second, we consider the pure traction problem. Let γ = λ
2µ and p = γdivu, we

consider the mixed weak formulation for (1.3) as follows:
Find (u, p) ∈ H1

⊥(Ω)× L2(Ω) such that
∫

Ω
ε(u) : ε(v)dx +

∫

Ω
p(divv)dx =

1
2µ

[∫

Ω
f · vdx +

n∑

i=1

∫

Γi

gi · v|Γids

]
,

∫

Ω
(divu)qdx− 1

γ

∫

Ω
pqdx = 0,

(2.5)

for all (v, q) ∈ H1
⊥(Ω)× L2(Ω).

Replacing p and q by
√

ωp and
√

ωq(ω ≥ 1), respectively, we obtain the following
formulation which is equivalent to (2.5):

Find (u, p) ∈ H1
⊥(Ω)× L2(Ω) such that

(2.6) Bω ((u, p), (v, q)) =
1
2µ

[∫

Ω
f · vdx +

n∑

i=1

∫

Γi

gi · v|Γids

]

for all (v, q) ∈ H1
⊥(Ω)× L2(Ω), where

Bω ((u, p), (v, q)) :=
∫

Ω

{
ε(u) : ε(v) +

√
ωp(divv) +

√
ω(divu)q − ω

γ
pq

}
dx.

The quantity ω is called the weighting factor. Equation (2.6) has a unique solution on
H1
⊥(Ω)× L2(Ω).
Let {T k} be a family of triangulations of Ω, where T k+1 is obtained by connecting

the midpoints of the edges of the triangles in T k. Let hk := maxT∈T k diamT , then
hk = 2hk+1. Now let us define the conforming finite element spaces.

Wk := {u : u|T is linear for all T ∈ T k,u is continuous on Ω},

W⊥
k :=

{
u ∈ Wk :

∫

Ω
u · vdxdy = 0, ∀v ∈ RM

}
.

To describe the mixed finite element method, we define

Qk := {q : q ∈ L2(Ω) and q|T is a constant for all T ∈ T k}.
For each k, define the bilinear form Bω,k on H1(Ω)× L2(Ω) by

Bω,k ((u, p), (v, q))

:=
∫

Ω

{
ε(u) : ε(v) +

√
ωp(Pk−1divv) +

√
ω(Pk−1divu)q − ω

γ
pq

}
dx,



16 KAB SEOK KANG

where Pk−1 is the L2-orthogonal projection onto Qk−1. Note that the bilinear forms
Bω,k are symmetric but indefinite.

The following discretization of (2.6) is a modification of one introduced by Falk in
[15].

Find (uk, pk) ∈ W⊥
k ×Qk−1 such that

(2.7) Bω,k ((uk, pk), (v, q)) =
1
2µ

[∫

Ω
f · vdx +

n∑

i=1

∫

Γi

gi · v|Γids

]

for all (v, q) ∈ W⊥
k ×Qk−1.

In [17], author showed the uniqueness of the solution of the discretization (2.7) with
ω = 1 and derived the following discretization error estimate:

‖u− uk‖L2(Ω) + hk

(|u− uk|H1(Ω) + ‖p− pk‖L2(Ω)

)

≤ Ch2
k

{
‖f‖L2(Ω) +

n∑

i=1

‖gi‖H1/2(Γi)

}
.

3. Multigrid algorithm and convergence analysis

We define the intergrid transfer operators and the mesh-dependent norms for each
problems. Next, we present Multigrid algorithm MG with Kaczmarz or Richardson
type smoother and prove the convergence of the algorithm at the same time. Some of
them are rephrases of lemmas in [13] and [18] and we give these lemmas without proof.

For the pure displace problem, since the Vk’s are nonconforming, the intergrid trans-
fer operators are defined by averaging.

Let Jk
k−1 : Vk−1 → Vk be defined by

Jk
k−1(v)(me) =





v(me), if me ∈ intT
for some T ∈ Tk−1,

1
2 [v|T1(me) + v|T2(me)], if e = T1 ∩ T2

for some T1, T2 ∈ Tk−1,

at the midpoints me of internal edges e in Tk.
The coarse-to-fine operator Ik

k−1 : Vk−1 ×Qk−1 → Vk ×Qk is defined by

Ik
k−1(v, q) = (Jk

k−1v, q).

Define the mesh dependent inner product by

((u, p), (v, q))k := (u,v)L2(Ω) + h2
k(p, q)L2(Ω).

The intergrid transfer operators Ik−1
k : Vk ×Qk → Vk−1 ×Qk−1 is defined by

(
Ik−1
k (u, p), (v, q)

)
k−1

=
(
(u, p), Ik

k−1(v, q)
)

k
,

for all (u, p) ∈ Vk ×Qk, and (v, q) ∈ Vk−1 ×Qk−1.
Let Q̂k = {q ∈ Qk :

∫
Ω qdx = 0}.
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The following three lemmas which concerned the pure displacement problems came
from [13].

Lemma 3.1. The following properties of Ik
k−1 and Ik−1

k hold.
(i) Given any (v, q) ∈ Vk ×Qk, (v, q) ∈ Vk × Q̂k only if ((v, q), (0, 1))k = 0.
(ii)

(
Ik
k−1(v, q), (0, 1)

)
k

= 1
4 ((v, q), (0, 1))k−1, for all (v, q) ∈ Vk−1 ×Qk−1.

(iii) Ik
k−1 : Vk−1 × Q̂k−1 → Vk × Q̂k.

(iv) Ik−1
k : Vk × Q̂k → Vk−1 × Q̂k−1.

Let Bk : Vk ×Qk → Vk ×Qk be defined by

(Bk(u, p), (v, q))k = Bk ((u, p), (v, q)) , ∀(u, p), (v, q) ∈ Vk ×Qk.

Lemma 3.2. Bk : Vk × Q̂k → Vk × Q̂k.
Let B̂k = Bk|Vk×Q̂k

.

Lemma 3.3. The spectral radius of B̂k ≤ Ch−2
k for k = 1, 2, . . . .

For the pure traction problem, because the Wk ś are conforming, the intergrid trans-
fer operators Ik

k−1 are defined by the natural way.
Define the mesh dependent inner product by

((u, p), (v, q))k := (u,v)L2(Ω) + h2
k(p, q)L2(Ω).

The intergrid transfer operators Ik−1
k : Wk ×Qk−1 → Wk−1 ×Qk−2 is defined by

(
Ik−1
k (u, p), (v, q)

)
k−1

= ((u, p), (v, q))k ,

for all (u, p) ∈ Wk ×Qk−1, and (v, q) ∈ Wk−1 ×Qk−2.
The following three lemmas which concerns the pure traction problems came from

[18].
Lemma 3.4. (i) RM ⊂ Wk, ∀k = 1, 2, . . ..

(ii) Given (u, p) ∈ Wk ×Qk−1,

(u, p) ∈ W⊥
k ×Qk−1 ⇔ ((u, p), (v, 0))k , ∀v ∈ RM.

(iii) Ik−1
k : W⊥

k ×Qk−1 → W⊥
k−1 ×Qk−2.

Define Bk,ω : Wk ×Qk−1 → Wk ×Qk−1 by

(Bk,ω(u, p), (v, q))k = Bk,ω ((u, p), (v, q)) , ∀(u, p), (v, q) ∈ Vk ×Qk−1.

Lemma 3.5. Bk : W⊥
k ×Qk−1 → W⊥

k ×Qk−1.

Let B⊥
k,ω = Bk,ω|W⊥

k ×Qk−1
.

Lemma 3.6. The spectral radius of B⊥
k,ω ≤ Ch−2

k for k = 1, 2, . . . .
Here and after in this chapter, we only consider the case of the pure displacement

problems. So we only use Vk, Q̂k and B̂k, but the following lemmas and theorem are
satisfied the case of pure traction problems by replacing Vk as W⊥

k , Q̂k as Qk−1 and
B̂k as B⊥

k .
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The mesh-dependent norms on Vk × Q̂k are defined as follows:

|||(u, p)|||s,k :=
√(

(B̂k
2
)s/2(u, p), (u, p)

)
k
, ∀(u, p) ∈ Vk × Q̂k.

This norm is well-defined. Moreover, for all (u, p), (v, q) ∈ Vk × Q̂k,

|||(u, p)|||0,k =
√
‖u‖2

L2(Ω)
+ h2

k‖p‖2
L2(Ω)

,

|Bk ((u, p), (v, q))| ≤ |||(u, p)|||2,k|||(v, q)|||0,k,

and

|||(u, p)|||2,k = sup
(v,q)∈Vk×Q̂k−(0,0)

|Bk ((u, p), (v, q))|
|||(v, q)|||0,k

.

Define P k−1
k : Vk × Q̂k → Vk−1 × Q̂k−1 by

Bk−1

(
P k−1

k (u, p), (v, q)
)

= Bk

(
(u, p), Ik

k−1(v, q)
)

,

for all (u, p) ∈ Vk × Q̂k and (v, q) ∈ Vk−1 × Q̂k−1.
We are now ready to state the basic Lemmas which are essential in the approximation

property of the multigrid algorithm.
Lemma 3.7. Given w ∈ L2(Ω), let (uk, pk) ∈ Vk × Q̂k be the solution of

Bk ((uk, pk), (v, q)) =
∫

Ω
w · vdx, ∀(v, q) ∈ Vk × Q̂k

and (uk−1, pk−1) ∈ Vk−1 × Q̂k−1 be the solution of

Bk−1 ((uk−1, pk−1), (v, q)) =
∫

Ω
w · vdx, ∀(v, q) ∈ Vk−1 × Q̂k−1.

Then
|||P k−1

k (uk, pk)− (uk−1, pk−1)|||0,k−1 ≤ Ch2
k‖w‖L2(Ω).

Lemma 3.8. Given w ∈ L2(Ω), let (uk, pk) ∈ Vk × Q̂k be the solution of

Bk ((uk, pk), (v, q)) =
∫

Ω
wqdx, ∀(v, q) ∈ Vk × Q̂k

and (uk−1, pk−1) ∈ Vk−1 × Q̂k−1 be the solution of

Bk−1 ((uk−1, pk−1), (v, q)) =
∫

Ω
wqdx, ∀(v, q) ∈ Vk−1 × Q̂k−1.

Then
|||(uk, pk)− Ik

k−1(uk−1, pk−1)|||0,k ≤ Chk‖w‖L2(Ω).

Finally, to define the k-th level Multigrid algorithm MGk, we need linear smoothing
operators Rk : Vk × Q̂k → Vk × Q̂k for all k. For the analysis of Multigrid algorithms,
we assume the following condition concerning the smoothing operators. To describe
this, we first define Kk = I −RkB̂k.
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Smoothing assumption(SM). There exists a constant C, independent of hk and
m, such that

(3.1) |||Km
k (u, p)|||2,k ≤ Ch−2

k

1√
m
|||(u, p)|||0,k, ∀(u, p) ∈ Vk × Q̂k.

Here, we only consider the W -cycle nonsymmetric multigrid algorithm.
The k-th level itration scheme of Multigrid algorithm MGk : For k = 1,

MGk((y0, s0), (w, r)) is the solution obtained from a direct method, i.e.,

MG1((y0, s0), (w, r)) =
(
B̂1

)−1
(w, r).

We assume that MGk−1 is defined. The k-th level iteration with initial guess (y0, s0) ∈
Vk × Q̂k yields
MGk((y0, s0), (w, r)) as a approximate solution to the following problem.

Find (y, s) ∈ Vk × Q̂k such that

B̂k(y, s) = (w, r), where (w, r) ∈ Vk × Q̂k.

Smoothing Step : The approximation (ym, sm) ∈ Vk × Q̂k is constructed recur-
sively from the initial guess (y0, s0) and the equations

(yl, sl) = (yl−1, sl−1) + RkBk ((w, r)−Bk(yl−1, sl−1)) , 1 ≤ l ≤ m.

Correction Step : The coarse-grid correction in Vk−1 × Q̂k−1 is obtained by ap-
plying the (k − 1)-th level iteration twice. More precisely,

(v0, q0) = (0, 0) and

(vi, qi) = MGk−1((vi−1, qi−1, (w̄, r̄)), i = 1, 2

where (w̄, r̄) ∈ Vk−1 × Q̂k−1 is defined by (w̄, r̄) := Ik−1
k ((w, r)−Bk(ym, sm)).

Then
MGk((y0, s0), (w, r)) = (ym, sm) + (v2, q2).

Let the final output of the two-grid algorithm be

(y], s]) := (ym, sm) + (v], q])

where

(v], q]) =
(

ˆBk−1

)−1
(w̄, r̄)

=
(
B̂k−1

)−1
Ik−1
k ((w, r)−Bk(ym, sm))

=
(
B̂k−1

)−1
Ik−1
k Bk(y − ym, s− sm).

The following two lemmas are found in [13].
Lemma 3.9.

(v], q]) = P k−1
k (y − ym, s− sm).
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From the definitions, we have

(y − ym, s− sm) = Km
k (y − y0, s− s0),

(y − y], s− s]) = (I − P k−1
k )Km

k (y − y0, s− s0).

Lemma 3.10. There exists a constant C, independent of hk and m, such that

(3.2) |||(I − P k−1
k )(u, p)|||0,k ≤ Ch2

k|||(u, p)|||2,k, ∀(u, p) ∈ Vk × Q̂k.

Theorem 3.11. [Convergence of the Two-Grid Algorithm] There exists a constant C,
independent of k and m, such that

|||(y − y], s− s])|||0,k ≤ C√
m
|||(y − y0, s− s0)|||0,k.

Proof. From the definition, (3.2), and (3.1), we get

|||(y − y], s− s])|||0,k = |||(I − P k−1
k )Km

k (y − y0, s− s0)|||0,k

≤ Ch2
k|||Km

k (y − y0, s− s0)|||2,k

≤ C√
m
|||(y − y0, s− s0)|||0,k.

Theorem 3.12. [Convergence of the k-th level Iteration] There exists a constant C,
independent of k and m, such that

|||(y, s)−MGk((y0, s0), (w, r))|||0,k ≤ C√
m
|||(y − y0, s− s0)|||0,k.

4. Verification of the Smothing assuption

In this section, we consider two smoothing, one is a Richardson type smoothing for
nonsymmetric or indefinite operator and other is a Kaczmarz smoothing.

The Richardson type smoothing is defined by

Rk :=
1
Λ2

k

B̂k
2
,

where Λ2
k be the largest eigenvalue of B̂2

k. This smoothing are considered in [13] and
[18].
Lemma 4.1. The above Rk satisfy Smoothing assumption (SM).

Now, we consider the Kaczmarz smoothing. Let B̂k = (bij)l
i,j=1. Then Kaczmarz

smoother is defined by the following algorithm.
Kaczmarz Algorithm. Let (w, r) ∈ Vk × Q̂k. We define Rk(w, r) ∈ Vk × Q̂k as

follows:
(i) Set (φ0, ζ0) = (0, 0).
(ii) Define (φi, ζi) for i = 1, . . . , l by

(φi, ζi) = (φi−1, ζi−1)− bi

bt
ibi

(bt
i(φi−1, ζi−1)− (w, r))

where bt
i = ith row of B⊥

k , i.e., bt
i = (bi1, bi2, . . . , bil).
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(iii) Set Rk(w, r) = (φl, ζl).
From the above algorithm, we obtain Kk = I − B̂k(D + L)−1B̂k where BkB

T
k =

D + L + LT , L is a strictly lower triangular matrix, and D is a diagonal matrix.
The following theorem are in [6].

Theorem 4.2. Let Ak be a sparse symmetric positive definite operator from Mk to
Mk and let Ak = l + d + lt where l is a lower triangular part and d is a diagonal part
of A. Let Rk = (d + l)−1. Then Rk satisfy the following property: There is a constant
CR which does not depend on k such that

‖u‖2
k

λk
≤ CR(R̄ku, u)k, for all u ∈Mk.

Here, R̄k is either (I −K∗
kKk)A−1

k or (I −KkK
∗
k)A∗k and Kk = I − RkAk. λk is the

largest eigenvalue of Ak.

Lemma 4.3. The Kaczmarz smoother is satisfied the smoothing assumption (SM).

Proof. Let Ak = (B̂k)2 and Mk = Vk × Q̂k in Theorem 4.2, then we have

‖(u, p)‖2
k

Λ2
k

≤ CR

[
((B⊥

k )2(u, p), (u, p))

−((B̂k)2(I − (D + L)−2(B̂k)2)(u, p), (I − (D + L)−2(B̂k)2)(u, p))
]
,

i.e.,

|||B̂k(u, p)|||22,k

Λ2
k

≤
[
(B̂k(u, p), B̂k(u, p))

−((I − B̂k(D + L)−2B̂k)B̂k(u, p), (I − B̂k(D + L)−2B̂k)B̂k(u, p)
]

=
(
(B̂k(u, p), B̂k(u, p))− (KkB̂k(u, p), KkB̂k(u, p))

)
.

In above, let B̂k(u, p) = (v, q), then we have

|||(v, q)|||22,k

Λ2
k

≤ CR (((v, q), (v, q))− (Kk(v, q),Kkv, q)))

= CR((I −Kt
kKk)(v, q), (v, q)).

(4.1)
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In (4.1), we let (v, q) = Km
k (w, s), then we have

|||Km
k (w, s)|||22,k ≤ CRΛ2

k((I −Kt
kKk)Km

k (w, s),Km
k (w, s))

= CRΛ2
k((I −Kt

kKk)(Kt
kKk)m(w, s), (w, s))

≤ CRΛ2
k

1
m

m−1∑

i=0

((I −Kt
kKk)(Kt

kKk)i(w, s), (w, s))

= CRΛ2
k

1
m

((I − (Kt
kKk)m)((w, s), (w, s))

≤ CRΛ2
k

1
m
|||(w, s)|||20,k

because spectral radius of Kk is less than 1 and Λk = Ch−2
k .

5. Numerical experiments

Multigrid algorithm described in Section 4 was applied to the pure displacement
boundary value problem (1.1) with µ = 1. The domain Ω is the unit square.

In Table I and II, ν = λ/(2(1 + λ)) is the Poisson ratio, h represents the lengths
of the horizontal and vertical sides of the triangles in the triangulation, the numbers
n represent Multigrid iterations required to achieved an L2 relative error of less than
1% in the displacements. In the first row, smoothing number represent the number
of smoothing steps in Multigrid algorithm. Table I represent the number of Multi-
grid iterations with Kaczmarz smoother and Table II represent the number Multigrid
iterations with Richardson smoother.

The results clearly illustrate that the number of Multigrid iterations is independent
of the Poisson ratio and Multigrid algorithm with Kaczmarz smoother is slightly better
than Multigrid algorithm with Richardson smoother.
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