• Title/Summary/Keyword: Smoke hazard

Search Result 75, Processing Time 0.028 seconds

A Study on the Toxic Gases and Smoke Hazard of PASCON Trough (파스콘 트로프의 연기유독성에 관한 연구)

  • Lee, Chang-Woo;Hyun, Seong-Ho;Choi, Don-Mook
    • Fire Science and Engineering
    • /
    • v.20 no.2 s.62
    • /
    • pp.1-7
    • /
    • 2006
  • The aim of the research is to estimate the effect of smoke and combustion gases on humane body indirectly through measuring the toxicity of those. For this purpose, the toxic index of smoke and combustion gases was investigated by smoke hazard test and analysis of smoke which were conducted by KS F 2271 and NES 713 method respectively. It i s proved by KS F 2271 method that PASCON trough is suitable to the testing standard of interior material and construction of building. In addition, it is identified by NES 713 method that combustion gases occurring in PASCON product were only carbon dioxide and carbon monoxide, and the smoke index of those was 0.944. This value means that the hazard effect of smoke gases on humane ! body can possibly happens when exposed to the smoke gases for more than 30 min. In aspect of the domestic situation that have not regulated the hazard estimation and the emissions of smoke when the flame retarding ability of the products have been requested, the toxic indexes of PASCON products are comparatively low.

연기와 연기감지기술에 대한 고찰

  • Lee, Bok-Yeong
    • Fire Protection Technology
    • /
    • s.15
    • /
    • pp.28-38
    • /
    • 1993
  • This report is explain the nature of smoke and the principle of smoke detection. The object of this research is to understand the hazard of smoke and select the optimum smoke detectors, according to the types of smoke and the particle size of smoke produced by fire

  • PDF

A Study on the Integration Control System Development for Smoke Control (연기제어를 위한 통합제어시스템 개발에 관한 연구)

  • Lee, Dong-Myung
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.6 no.4 s.23
    • /
    • pp.15-20
    • /
    • 2006
  • This study developed integration control system that improve efficiency and give flexibility of smoke control system and can improve prevention of disasters performance. The reliable each kind sensor and of integration control system was developed by establishing the specifications, algorithms and constructing engineering data. More correct and reliable control function of optimization can be obtained by the central control from integration control system rather than the existent individual control. This sees to do to impose flexibility to smoke control system. Also, this will provide the basics of integration control system and ability security of smoke control system and can construct smoke control system of performance based.

A Study on the Design of Evacuation Route at Subway Station Using Simulation Analysis (Simulation 분석을 통한 지하철 역사 피난동선 설계 방안에 관한 연구)

  • Ham, Eun-Gu;Roh, Sam-Kew
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.5
    • /
    • pp.1-7
    • /
    • 2010
  • Since subway fire disaster at Daegu, Korea smoke control system and passengers evacuation distance has been focused to reform. Existing smoke control facilities need to expand volume of ventilation capacity however, the complicate subway station structure can hardly react dispersion of smokes from massive subway cabin fire. Smoke flow at platform level move upward thought vertical stairway and passengers evacuation goes with same direction. The victims of evacuees from subway station fire mainly due to exposure of heat radiation and smoke. The study demonstration the effect of downward evacuates stairway system by separating evacuation route to smoke movement pass way including saving times of evacuation.

A Study on Heat and Smoke Exhaust Characteristics from the Subway Fire for Different Ventilation Modes (지하철 화재시 제연모드에 따른 열 및 연기 배출 특성 연구)

  • Chang, Hee-Chul;Yoon, Kyung-Beom;Park, Won-Hee;Kim, Tae-Kuk
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.3
    • /
    • pp.37-42
    • /
    • 2008
  • This study is focused on the numerical predictions for different smoke-control ventilation modes for the subway fire. Smoke-control ventilation mode in the domestic platform is that exhausting for the smoke detected zones while supplying air or stopping any ventilation for other zones in the platform. Three cases of smoke control ventilation modes are considered. First and second case are present running smoke control mode in Korea. The third is that smoke-control ventilation fans equipped in the platform are operated in first 4 minute(platform evacuation time, NFPA130) since then the fans equipped in the platform are stopped and the fans equipped in the tunnels are operated. Distributions of heat, carbon monoxide and visible range are compared at a height of 1.7m(passenger breath/sight height) above the platform. The numerical results show that air supply fan operation in the platform causes the smoke disturbance and a rapid spread of the smoke. The switch-operation with fans in both the platform and tunnel are better than operation with only platform fans in smoke rejection efficiency.

Flame control method for hot smoke test (Hot smoke test 를 위한 화염 제어 방법)

  • 김진국
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.30-33
    • /
    • 1996
  • This paper presents the technical basis for hot smoke test intended to investigate the effectiveness of smoke ventilation system in both high-rise building and those containing atria and/or galleria. Smoke is particularly serious hazard in these building in which considerable time is required for complete evacuation. It is widely recognised that the effectiveness of large smoke ventilation system can be difficult to confirm by a critical analysis of the system design calculation. Thus a hot smoke test is recently introduced through the experiences of many attempts. Diffusion flames used for hot smoke test have a higher flame length, so that those can not be applied to small compartment. Therefore the objective of this paper is introducing the method of flame control which can be applied to any size of compartment

  • PDF

A Study on the Characteristics of Combustion for Car Interior Materials (자동차 내장재의 연소 특성에 관한 연구)

  • Kim, Young-Tak;Kim, Hae-Rim;Park, Young-Ju;Lee, Hae-Pyeong
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.450-455
    • /
    • 2008
  • We have carried out the test using the cone calorimeter and the smoke density chamber to evaluate the characteristics of the combustion for the car interior materials passed horizontal burning test. We have analysed many parameters related to fire hazard. These parameters are the ignition time, the heat release rate, the maximum average rate of heat emission, the flashover propensity and specific optical density. There was a significant difference in HRR and optical smoke density. The HRR was $185{\sim}446kW/m^2$ and optical smoke density was $119{\sim}1207$. Only horizontal burning test was performed to evaluate the fire hazard for the car interior materials.

  • PDF

A Study on the Automatic Pressure Differential Sensor Development of Smoke Control Zone (제연구역의 자동 차압센서 개발에 관한 연구)

  • Lee, Dong-Myung
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.5 no.3 s.18
    • /
    • pp.23-28
    • /
    • 2005
  • This study defined engineering mechanism and compensation method to establish reference pressure of smoke control zone with atmospheric pressure that is compensated for temperature. The reliable pressure differential sensor was developed by establishing the specifications, algorithms and constructing engineering data. The development of pressure differential sensor can cut down number of processes, manufacturing and installation cost by removing pressure measurement pipe established separately for non smoke control zone, and improve the accuracy of pressure differential by embedding pressure measurement ports for non smoke control zone. More correct and reliable pressure differentials can be obtained by the central control rather than the existent individual control. This will provide the basics and the flexibility to the integral smoke control system and accordingly improve the performance of disaster prevention.

The Performance of the Combined Operation of Sprinkler and Smoke Curtain for Smoke Control in the Sloped Stairway Corridor (경사통로로 전파되는 연기에 대한 스프링클러와 제연커텐의 통합제연성능)

  • Jeon, Heung-Kyun;Choi, Young-Sang;Choo, Hong-Lok
    • Fire Science and Engineering
    • /
    • v.20 no.4 s.64
    • /
    • pp.1-12
    • /
    • 2006
  • In this study, CFD computer simulations by FDS are carried out in order to confirm the performance of the combined operation of both sprinkler system and smoke curtain of 0.54 m depth installed for cooling and blocking the smoke which propagates beneath the sloped ceiling of a stairway corridor of which dimensions are 17.92 m long, 4.00 m wide, and 6.12 m high. It is shown that the response time of sprinklers decreases with fire size and it increases more about 1.1 second in case without smoke curtain than in case with smoke curtain, that the time of smoke transport from the fire source to the stairway outlet decreases considerably with fire size, and that the delay effect of smoke transport is not related to the sprinkler system, whether it is operated or not. This study shows that the combined operation of both sprinkler system and smoke curtain is very effective in smoke cooling, but it is a little for effect on smoke blockage. Although the hazard of skin burn due to radiative heat flux from hot smoke layer is decreased by spray cooling effect, the hazard of smoke suffocation and the weakening of visibility is increased by smoke downdrag and the turbulence of smoke-air mixing due to water spray. These conditions may result in preventing occupants from going out of the stairway during evacuation.

Experimental Investigation about Optimum Smoke Extraction System for Underground Station (축소 모형 실험을 통한 정거장내 적정 배연방식에 관한 연구)

  • Lee, Ho-Keun;Kim, Myoung-Woo;Lee, Phill-Young;Kim, Nam-Suk
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.4
    • /
    • pp.53-59
    • /
    • 2008
  • If fire is occurred in the subway, the train must be moved to the closest station and make passengers get off the train. As a matter of fact, the Fire of Dae-gu Subway was coped with this way. But, the fire smoke extraction system of real subway stations have not designed to deal with fire of trains yet. Therefore, we have to establish a plan of station railroad for preventing from unexpected damage when the fired train comes to the station. The purpose of this study is to establish the effective smoke extraction measure that is to prevent stations from damage by the scale-down experiment.